
ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem A. Adjustment Office

Input file: adjustment.in

Output file: adjustment.out

Garrison and Anderson are working in a company named “Adjustment Office”. In competing companies
workers change the reality, in this company they try to predict the future.

They are given a big square board n × n. Initially in each cell (x, y) of this board the value of x+ y is
written (1 ≤ x, y ≤ n). They know that in the future there will be two types of queries on the board:

• “R r” — sum up all values in row r, print the result and set all values in row r to zero;

• “C c” — sum up all values in column c, print the result and set all values in column c to zero.

They have predicted what queries and results there will be. They need to ensure that they have correctly
predicted the results. Help them by computing the results of the queries.

Input
The first line of the input contains two integers n and q (1 ≤ n ≤ 106, 1 ≤ q ≤ 105) — the size of the
square and the number of queries.

Each of the next q lines contains the description of the query. Each query is either “R r” (1 ≤ r ≤ n) or
“C c” (1 ≤ c ≤ n).

Output
The output file shall contain q lines. The i-th line shall contain one integer — the result of the i-th query.

Sample input and output

adjustment.in adjustment.out

3 7

R 2

C 3

R 2

R 1

C 2

C 1

R 3

12

10

0

5

5

4

0

Page 1 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem B. Binary vs Decimal

Input file: binary.in

Output file: binary.out

Bruce has recently got a job at NEERC (Numeric Expression Engineering & Research Center) facility,
which studies and produces many kinds of curious numbers. His first assignment is to perform a study
of bindecimal numbers.

A positive integer is called bindecimal if its decimal representation is a suffix of its binary representation;
both binary and decimal representations are considered without leading zeros. For example, 1010 = 10102,
thus, 10 is a bindecimal number. The numbers 101010 = 11111100102 and 4210 = 10101010 are, evidently,
not bindecimal.

First of all, Bruce is going to create a list of bindecimal numbers. Help him find the n-th smallest
bindecimal number.

Input
The first and the only line contains one integer — n (1 ≤ n ≤ 10 000).

Output
Print one integer — the n-th smallest bindecimal number in decimal notation.

Sample input and output

binary.in binary.out

1 1

2 10

10 1100

Note
Here is a table with the first few numbers which contain only 0’s and 1’s in their decimal representation
(it is clear that all other numbers are not bindecimal):

Decimal Binary Comment

1 1 1st bindecimal number

10 1010 2nd bindecimal number

11 1011 3rd bindecimal number

100 1100100 4th bindecimal number

101 1100101 5th bindecimal number

110 1101110 6th bindecimal number

111 1101111 7th bindecimal number

1000 1111101000 8th bindecimal number

1001 1111101001 9th bindecimal number

1010 1111110010 Not a bindecimal number

1011 1111110011 Not a bindecimal number

1100 10001001100 10th bindecimal number

Page 2 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem C. Cactus Jubilee
Input file: cactus.in

Output file: cactus.out

This is the 20-th Northeastern European Regional Contest (NEERC). Cactus problems had become a
NEERC tradition. The first Cactus problem was given in 2005, so there is a jubilee — 10 years of Cactus.

Cactus is a connected undirected graph in which every edge lies on at most one simple cycle. Intuitively
cactus is a generalization of a tree where some cycles are allowed. Multiedges (multiple edges between a
pair of vertices) and loops (edges that connect a vertex to itself) are not allowed in a cactus.

You are given a cactus. Let’s move an edge — remove one of graph’s edges, but connect a different pair
of vertices with an edge, so that a graph still remains a cactus. How many ways are there to perform
such a move?

1 2 3 4

5 6

1

2

3

4

5

6

7

8

9

10 11

1213

14

15

For example, in the left cactus above (given in the first sample), there are 42 ways to perform an edge
move. In the right cactus (given in the second sample), which is the classical NEERC cactus since the
original problem in 2005, there are 216 ways to perform a move.

Input
The first line of the input file contains two integers n and m (1 ≤ n ≤ 50 000, 0 ≤ m ≤ 50 000). Here
n is the number of vertices in the graph. Vertices are numbered from 1 to n. Edges of the graph are
represented by a set of edge-distinct paths, where m is the number of such paths.

Each of the followingm lines contains a path in the graph. A path starts with an integer ki (2 ≤ ki ≤ 1000)
followed by ki integers from 1 to n. These ki integers represent vertices of a path. Adjacent vertices in
a path are distinct. Path can go to the same vertex multiple times, but every edge is traversed exactly
once in the whole input file.

The graph in the input file is a cactus.

Output
Write to the output file a single integer — the number of ways to move an edge in the cactus.

Sample input and output

cactus.in cactus.out

6 1

7 1 2 5 6 2 3 4

42

15 3

9 1 2 3 4 5 6 7 8 3

7 2 9 10 11 12 13 10

5 2 14 9 15 10

216

Page 3 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem D. Distance on Triangulation

Input file: distance.in

Output file: distance.out

You have a convex polygon. The vertices of the polygon are successively numbered from 1 to n. You also
have a triangulation of this polygon, given as a list of n− 3 diagonals.

You are also given q queries. Each query consists of two vertex indices. For each query, find the shortest
distance between these two vertices, provided that you can move by the sides and by the given diagonals of
the polygon, and the distance is measured as the total number of sides and diagonals you have traversed.

Input
The first line of the input file contains an integer n — the number of vertices of the polygon
(4 ≤ n ≤ 50 000).

Each of the following n−3 lines contains two integers ai, bi — the ends of the i-th diagonal (1 ≤ ai, bi ≤ n,
ai 6= bi).

The next line contains an integer q — the number of queries (1 ≤ q ≤ 100 000).

Each of the following q lines contains two integers xi, yi — the vertices in the i-th query (1 ≤ xi, yi ≤ n).

It is guaranteed that no diagonal coincides with a side of the polygon, and that no two diagonals coincide
or intersect.

Output
For each query output a line containing the shortest distance.

Sample input and output

distance.in distance.out

6

1 5

2 4

5 2

5

1 3

2 5

3 4

6 3

6 6

2

1

1

3

0

This is the polygon from the sample input.

1 2

3

45

6

Page 4 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem E. Easy Problemset

Input file: easy.in

Output file: easy.out

Perhaps one of the hardest problems of any ACM ICPC contest is to create a problemset with a reasonable
number of easy problems. On Not Easy European Regional Contest this problem is solved as follows.

There are n jury members (judges). They are numbered from 1 to n. Judge number i had prepared pi
easy problems before the jury meeting. Each of these problems has a hardness between 0 and 49 (the
higher the harder). Each judge also knows a very large (say infinite) number of hard problems (their
hardness is 50). Judges need to select k problems to be used on the contest during this meeting.

They start to propose problems in the ascending order of judges numbers. The first judge takes the first
problem from his list of remaining easy problems (or a hard problem, if he has already proposed all his
easy problems) and proposes it. The proposed problem is selected for the contest if its hardness is

greater than or equal to the total hardness of the problems selected so far, otherwise it is
considered too easy. Then the second judge does the same etc.; after the n-th judge, the first one proposes
his next problem, and so on. This procedure is stopped immediately when k problems are selected.

If all judges have proposed all their easy problems, but they still have selected less than k problems, then
they take some hard problems to complete the problemset regardless of the total hardness.

Your task is to calculate the total hardness of the problemset created by the judges.

Input
The first line of the input file contains the number of judges n (2 ≤ n ≤ 10) and the number of problems k
(8 ≤ k ≤ 14). The i-th of the following n lines contains the description of the problems prepared by the
i-th judge. It starts with pi (1 ≤ pi ≤ 10) followed by pi non negative integers between 0 and 49 — the
hardnesses of the problems prepared by the i-th judge in the order they will be proposed.

Output
Output the only integer — the total hardness of the selected problems.

Sample input and output

easy.in easy.out

3 8

5 0 3 12 1 10

4 1 1 23 20

4 1 5 17 49

94

3 10

2 1 3

1 1

2 2 5

354

In the first example, three problems with hardnesses of 0, 1, and 1 are selected first. Then the first judge
proposes the problem with hardness 3 and it is selected, too. The problem proposed by the second judge
with hardness 1 is not selected, because it is too easy. Then the problems proposed by the third, the
first, and the second judges are selected (their hardnesses are 5, 12 and 23). The following three proposed
problems with hardness of 17, 1 and 20 are not selected, and the problemset is completed with a problem
proposed by the third judge with hardness of 49. So the total hardness of the problemset is 94.

In the second example, three problems with hardnesses of 1, 1, and 2 are selected first. The second
problem of the first judge (hardness 3) is too easy. The second judge is out of his easy problems, so he
proposes a problem with hardness 50 and it is selected. The third judge’s problem with hardness 5 is
not selected. The judges decide to take 6 more hard problems to complete the problemset, which gives
the total hardness of 54 + 6 · 50 = 354.

Page 5 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem F. Froggy Ford

Input file: froggy.in

Output file: froggy.out

Fiona designs a new computer game Froggy Ford. In this game, a player helps a frog to cross a river
using stone fords. Frog leaps from the river’s shore to the first stone ford, than to the second one and
so on, until it reaches the other shore. Unfortunately, frog is pretty weak and its leap distance is quite
limited. Thus, a player should choose the optimal route — the route that minimizes the largest leap
required to traverse the route.

1

2

3

4

5

6

7

Optimal route

1

2

3

4

5

6

7
+

Optimal route with added stone

Fiona thinks that this game is not challenging enough, so she plans to add a possibility to place a new
stone in the river. She asks you to write a program that determines such a location of the new stone that
minimizes the largest leap required to traverse the optimal route.

Input
The first line of the input file contains two integers w — the width of the river and n — the number of
stones in it (1 ≤ w ≤ 109, 0 ≤ n ≤ 1000).

Each of the following n lines contains two integers xi, yi — the coordinates of the stones (0 < xi < w,
−109 ≤ yi ≤ 109). Coordinates of all stones are distinct.

River shores have coordinates x = 0 and x = w.

Output
Write to the output file two real numbers x+ and y+ (0 < x+ < w, −109 ≤ y+ ≤ 109) — the coordinates
of the stone to add. This stone shall minimize the largest leap required to traverse the optimal route. If
a new stone cannot provide any improvement to the optimal route, then an arbitrary pair of x+ and y+
satisfying the constraints can be written, even coinciding with one of the existing stones.

Your answer shall be precise up to three digits after the decimal point.

Sample input and output

froggy.in froggy.out

10 7

2 2

2 4

5 1

5 3

8 2

7 5

9 4

4.5 4.5

Page 6 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem G. Generators
Input file: generators.in

Output file: generators.out

Little Roman is studying linear congruential generators — one of the oldest and best known pseudo-
random number generator algorithms. Linear congruential generator (LCG) starts with a non-negative
integer number x0 also known as seed and produces an infinite sequence of non-negative integer numbers xi
(0 ≤ xi < c) which are given by the following recurrence relation:

xi+1 = (axi + b) mod c

here a, b, and c are non-negative integer numbers and 0 ≤ x0 < c.

Roman is curious about relations between sequences generated by different LCGs. In particular, he has
n different LCGs with parameters a(j), b(j), and c(j) for 1 ≤ j ≤ n, where the j-th LCG is generating a

sequence x
(j)
i . He wants to pick one number from each of the sequences generated by each LCG so that

the sum of the numbers is the maximum one, but is not divisible by the given integer number k.

Formally, Roman wants to find integer numbers tj ≥ 0 for 1 ≤ j ≤ n to maximize s =
∑n

j=1 x
(j)
tj

subject
to constraint that s mod k 6= 0.

Input
The first line of the input file contains two integer numbers n and k (1 ≤ n ≤ 10 000, 1 ≤ k ≤ 109).

The following n lines describe LCGs. Each line contains four integer numbers x
(j)
0 , a(j), b(j), and c(j)

(0 ≤ a(j), b(j) ≤ 1000, 0 ≤ x
(j)
0 < c(j) ≤ 1000).

Output
If Roman’s problem has a solution, then write on the first line of the output file a single integer s —
the maximum sum not divisible by k, followed on the next line by n integer numbers tj (0 ≤ tj ≤ 109)
specifying some solution with this sum.

Otherwise, write to the output file a single line with the number −1.

Sample input and output

generators.in generators.out

2 3

1 1 1 6

2 4 0 5

8

4 1

2 2

0 7 2 8

2 5 0 6

-1

In the first example, one LCG is generating a sequence 1, 2, 3, 4, 5, 0, 1, 2, . . ., while the other LCG a
sequence 2, 3, 2, 3, 2, . . ..

In the second example, one LCG is generating a sequence 0, 2, 0, 2, 0, . . ., while the other LCG a sequence
2, 4, 2, 4, 2, . . ..

Page 7 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem H. Hypercube

Input file: hypercube.in

Output file: hypercube.out

Consider a 4-hypercube also known as tesseract. A unit solid tesseract is a 4D figure that is equal to
the convex hull of 16 points with Cartesian coordinates (±1

2 ,±
1
2 ,±

1
2 ,±

1
2) — its vertices. It has 32 edges

(1D), 24 square faces (2D), and 8 cubic 3-faces (3D) also known as cells. We study hollow tesseracts and
define a tesseract as a boundary of a solid tesseract. Thus, a tesseract is a connected union of 8 solid
cubes (its cells) that intersect between each other at 24 tesseract’s square faces, 32 edges, and 16 vertices.

Let’s cut a tesseract along 17 of its 24 faces, so that it still remains connected via 7 faces that were left
intact. Unfold the tesseract into a 3D hyperplane by rotating its constituting cubes along the faces that
were left intact until all its cells lie in the same 3D hyperplane. The result is called a 3-net of a tesseract.
This process is a natural generalization of how a 3D cube is cut and unfolded onto a 2D plane to produce
a 2-net of a cube that consists of 6 squares.

In this problem you are given a tree-like 8-polycube in 3D space also known as octocube. An octocube is
a collection of 8 unit cubical cells joined face-to-face. More formally, intersection of each pair of cubical
cells constituting an octocube is either empty, a point, a unit line (1D), or a unit square (2D). The given
octocube is tree-like in the following sense. Consider an adjacency graph of the octocube — a graph with
8 vertices corresponding to its 8 cells. There is an edge in the adjacency graph between pairs of adjacent
cells. Two cells of an octocube are called adjacent when their intersection is a square. Cells that intersect
at a point or a line are not considered adjacent. An octocube is called tree-like when its adjacency graph
is a tree.

Your task is to determine whether the given tree-like octocube constitutes a 3-net of a tesseract. That
is, whether this octocube being put onto a hyperplane in 4D space can be folded in 4D space along the
squares of intersection between its cells into a tesseract.

For example, look at the leftmost picture below. It shows a wire-frame of the tree-like octocube. Rotate
cell GHLKG1H1L1K1 around a plane GHLK and cell FGKJF2G2K2J2 around a plane FGKJ at angle
90 degrees in 4-th dimension outside of the original hyperplane. As a result, point G1 joins with G2 and
K1 joins with K2. The face GKK2G2 is glued to face GKK1G1. The result is shown on the right.
The 4-th dimension is orthographically projected onto the 3 shown in perspective. The points that have
moved out of the original hyperplane are marked with hollow dots.

A
B C

D

E
F G

H

I
J K

L

M
N O

P

Q
R S

T

E1

F1

I1

J1

G1

H1

K1

L1

E2 H2

I2 L2

F2 G2

J2 K2

xy

z

t

A
B C

D

E
F G

H

I
J K

L

M
N O

P

Q
R S

T

E1

F1

I1

J1

G1

H1

K1

L1

E2 H2

I2 L2

F2 G2

J2 K2

xy

z

Page 8 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Rotate EFJIE1F1J1I1 around EFJI and EHLIE2H2L2I2 around EHLI. The result is shown on the
following picture on the left. The remaining steps are as follows. Rotate MNOPQRST around MNOP ,
then rotate both MNOPQRST and IJKLMNOP around IJKL and rotate ABCDEFGH around
EFGH. The last step is to glue all faces that meet together to get a tesseract that is shown on the right.

t

A
B C

D

E
F G

H

I
J K

L

M
N O

P

Q
R S

T

E1

F1

I1

J1

G1

H1

K1

L1

E2 H2

I2 L2

F2 G2

J2 K2

xy

z

t

A
B C

D

E
F G

H

I
J K

L

M
N O

P

Q
R S

TE1

F1

I1

J1

G1

H1

K1

L1

E2 H2

I2 L2

F2 G2

J2 K2

xy

z

Input
The first line of the input file contains there integers m, n, k — the width, the depth, and the height
of the box that contains the given octocube (1 ≤ m,n, k ≤ 8). The following k groups of lines describe
rectangular slices of the box from top to bottom. Each slice is described by n rows with m characters
each. The characters on a line are either ‘.’, denoting an empty space, or ‘x’, denoting a unit cube. The
input file is guaranteed to describe a tree-like octocube.

Output
Write to the output file a single word “Yes” if the given octocube can be folded into a tesseract or “No”
otherwise.

Sample input and output

hypercube.in hypercube.out

3 3 4

...

.x.

...

.x.

xxx

.x.

...

.x.

...

...

.x.

...

Yes

8 1 1

xxxxxxxx

No

Page 9 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem I. Iceberg Orders

Input file: iceberg.in

Output file: iceberg.out

You are working for Metagonia stock exchange. Recently traders in Metagonia had heard about Iceberg
orders traded on London stock exchange and asked your employer to add such functionality as well. A
stock exchange is an engine that receives orders and generates trades.

An iceberg order is a quintuple of integers (ID, T , P , V , TV ). Each order has an identifier ID (unique
among all orders), type T (which is equal to either BUY = 1 or SELL = 2), price P , total remaining
volume V and tip volume TV . For each order, exchange additionally keeps track of its current volume
CV and priority PR. There is also a global priority counter of the exchange GP . An order book of the
exchange is a set of orders.

Trades that are generated by the exchange are quadruples of integers (BUY ID, SELL ID, P , V ). Each
trade has BUY ID and SELL ID — identifiers of matching BUY and SELL orders, trade price P ,
and trade volume V .

When an order is received by the exchange it is matched against orders currently on the order book.
This is done as follows. Suppose an order a is received with Ta = SELL. Among all orders currently
on the order book we look for an order b such that Tb = BUY and Pb ≥ Pa. We select such an order b
with the largest price, and if there are several — one with the smallest priority. If there is such an order
b, then a trade t is generated with BUY IDt = IDb and SELL IDt = IDa at trade price Pt = Pb with
trade volume Vt = min(Va, CVb). Va, Vb, and CVb are all decreased by trade volume. If Vb = 0 after this,
then the order b is removed from the order book. If CVb = 0 (but Vb > 0) then we set current volume
of order b to CVb = min(Vb, TVb), set PRb = GP , and increment GP . We continue these operations of
selecting b and generating trades until either Va = 0 or there are no more orders b on the order book which
satisfy the condition. In the latter case, we add order a to the order book with CVa = min(Va, TVa) and
PRa = GP , and then increment GP . When the process of matching the order a is finished with several
trades between the same pair of orders a and b (and there can be lots of them!), they are all united into
a single trade with the volume equal to the sum of individual trade volumes.

If Ta = BUY we are looking for an order b with Tb = SELL and Pb ≤ Pa and select such an order b with
the smallest price and the smallest priority among those. The rest of the matching process is as described
above, with trades having BUY IDt = IDa, SELL IDt = IDb, Pt = Pb, and Vt = min(Va, CVb).

Initially the order book is empty. You are presented with several orders that are received by the exchange
one by one. You need to print generated trades and the order book state after all orders are processed.

Hint: The priority and GP are introduced in the problem statement only for the purpose of a formal
description of the algorithm. The actual implementation does not have to keep track of priority. Typically,
an exchange simply keeps a priority-ordered list of orders of each type at each price in its order book.

Input
The first line of the input contains the number of orders n (1 ≤ n ≤ 50 000). Each of the fol-
lowing n lines represent an order. Each order is given by a space-separated quintuple ID T P V
TV , where 1 ≤ ID ≤ 1 000 000, T = 1 for BUY and T = 2 for SELL, 1 ≤ P ≤ 100 000 and
1 ≤ TV ≤ V ≤ 1 000 000 000.

Output
For each order print all trades generated by processing this order, in ascending order of pairs (BUY ID,
SELL ID), each trade on its own line. Each trade shall be printed as a space-separated quadruple of
integers BUY ID SELL ID P V . It is guaranteed that the total number of trades would not exceed
100 000. Print a blank line after all trades, followed by the order book. Each order that is still on the
book shall be printed as a space-separated sextuple ID T P V TV CV , sorted first by P and then by
PR.

Page 10 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Sample input and output

iceberg.in iceberg.out

7

42 1 100 200 20

239 1 100 50 50

1111 1 101 30 15

1234 1 100 300 15

4321 2 99 125 25

5678 1 101 30 30

8765 2 101 100 20

42 4321 100 30

239 4321 100 50

1111 4321 101 30

1234 4321 100 15

5678 8765 101 30

42 1 100 170 20 10

1234 1 100 285 15 15

8765 2 101 70 20 20

In the sample input the first four orders have T = BUY . Assuming that at the beginning GP at the
exchange was equal to 1, after receiving these orders the order book looks in the following way when
ordered according to the matching rules from the problem statement for Tb = BUY orders (first by the
largest price, then by the smallest priority):

ID T P V TV CV PR

1111 1 101 30 15 15 3

42 1 100 200 20 20 1
239 1 100 50 50 50 2

1234 1 100 300 15 15 4

The fifth order (with IDa = 4321) has Ta = SELL, Pa = 99, and Va = 125 and is eligible for match with
all of the above four orders given in the above table. First, it matches twice with the order 1111 with
the highest price of 101 for a total trade volume of 30, removes it from the order book, bumps GP to 6
in the process, and decreases Va to 95. Then, there are three other orders at price 100. One matching
pass through them produces three trades for a total volume of 85 (volume 20 with order 42, volume 50
with order 239, removes it from the book, volume 15 with order 1234), bumps GP to 8, and decreases
Va to 10. The remaining orders in the book are shown below:

ID T P V TV CV PR

42 1 100 180 20 20 6
1234 1 100 275 15 15 7

One last match with the order 42 produces a trade with a volume of 10 (for a total volume of 30 for
matches with order 42) and the order 4321 is done (Va = 0). Four corresponding total trades for order
4321 are printed in the sample output. The remaining order book is:

ID T P V TV CV PR

42 1 100 180 20 10 6
1234 1 100 275 15 15 7

The sixth BUY order (with ID = 5678) is added to the order book (GP becomes 9):

ID T P V TV CV PR

5678 1 101 30 30 30 8

42 1 100 180 20 10 6
1234 1 100 275 15 15 7

The last, seventh order (with ID = 8765), can be matched only with the order 5678 due to price condition,
generates a trade with volume of 30, order 5678 is removed from the order book, while order 8765 is
added. Now the order book has both BUY and SELL orders:

ID T P V TV CV PR

42 1 100 180 20 10 6
1234 1 100 275 15 15 7

8765 2 101 70 20 20 9

Page 11 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem J. Jump

Input file: standard input

Output file: standard output

Consider a toy interactive problem OneMax which is defined as follows. You know an integer n and
there is a hidden bit string S of length n. The only thing you may do is to present the system a bit
string Q of length n, and the system will return the number OneMax(Q) — the number of bits which
coincide in Q and S at the corresponding positions. The name of OneMax problem stems from the fact
that this problem is simpler to explain when S = 111 . . . 11, so that the problem turns into maximization
(Max) of the number of ones (One).

When n is even, there is a similar (but harder) interactive problem called Jump. The simplest way to
describe the Jump is by using OneMax:

Jump(Q) =

{

OneMax(Q) if OneMax(Q) = n or OneMax(Q) = n/2;

0 otherwise.

Basically, the only nonzero values of OneMax which you can see with Jump are n (which means you’ve
found the hidden string S) and n/2.

Given an even integer n — the problem size, you have to solve the Jump problem for the hidden string
S by making interactive Jump queries. Your task is to eventually make a query Q such that Q = S.

Interaction protocol
First, the testing system tells the length of the bit string n. Then, your solution asks the queries and
the system answers them as given by the Jump definition. When a solution asks the query Q such that
Q = S, the system answers n and terminates, so if your solution, after reading the answer n, tries reading
or writing anything, it will fail.

The limit on the number of queries is n+ 500. If your solution asks a (n+ 501)-th query, then you will
receive the “Wrong Answer” outcome. You will also receive this outcome if your solution terminates too
early.

If your query contains wrong characters (neither 0, nor 1), or has a wrong length (not equal to n), the
system will terminate the testing and you will receive the “Presentation Error” outcome.

You will receive the “Time Limit Exceeded” outcome and other errors for the usual violations.

Finally, if everything is OK (e.g. your solution finds the hidden string) on every test, you will receive the
“Accepted” outcome, in this case you will have solved the problem.

Input
The first line of the input stream contains an even number n (2 ≤ n ≤ 1000). The next lines of the input
stream consist of the answers to the corresponding queries. Each answer is an integer — either 0, n/2,
or n. Each answer is on its own line.

Output
To make a query, print a line which contains a string of length n which consists of characters 0 and 1

only. Don’t forget to put a newline character and to flush the output stream after you print your query.

Sample input and output

standard input standard output

2

1

0

1

2

01

11

10

00

Page 12 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem K. King’s Inspection

Input file: king.in

Output file: king.out

King Karl is a responsible and diligent ruler. Each year he travels across his country to make certain
that all cities are doing well.

There are n cities in his country and m roads. In order to control the travelers, each road is unidirectional,
that is a road from city a to city b can not be passed from b to a.

1 2

3 4

Karl wants to travel along the roads in such a way that he starts in the capital, visits every non-capital
city exactly once, and finishes in the capital again.

As a transport minister, you are obliged to find such a route, or to determine that such a route doesn’t
exist.

Input
The first line contains two integers n and m (2 ≤ n ≤ 100 000, 0 ≤ m ≤ n+ 20) — the number of cities
and the number of roads in the country.

Each of the next m lines contains two integers ai and bi (1 ≤ ai, bi ≤ n), meaning that there is a one-way
road from city ai to city bi. Cities are numbered from 1 to n. The capital is numbered as 1.

Output
If there is a route that passes through each non-capital city exactly once, starting and finishing in the
capital, then output n + 1 space-separated integers — a list of cities along the route. Do output the
capital city both in the beginning and in the end of the route.

If there is no desired route, output “There is no route, Karl!” (without quotation marks).

Sample input and output

king.in king.out

4 6

1 4

4 1

4 2

2 1

3 4

1 3

1 3 4 2 1

4 3

1 4

1 4

2 2

There is no route, Karl!

Page 13 of 14



ACM ICPC 2015–2016, Northeastern European Regional Contest.

St. Petersburg – Barnaul – Tbilisi – Tashkent, December 6, 2015

Problem L. Landscape Improved

Input file: landscape.in

Output file: landscape.out

Louis L Le Roi-Univers has ordered to improve the landscape that is seen from the royal palace. His
Majesty prefers to see a high mountain.

The Chief Landscape Manager is going to raise a mountain for Louis. He represents a landscape as a
flat picture on a grid of unit squares. Some of the squares are already filled with rock, while others are
empty. This greatly simplifies the design. Unit squares are small enough, and the landscape seems to be
smooth from the royal palace.

The Chief Landscape Manager has a plan of the landscape — the heights of all rock-filled columns for
each unit of width. He is going to add at most n square units of stones atop of the existing landscape to
make a mountain with as high peak as possible. Unfortunately, piles of stones are quite unstable. A unit
square of stones may be placed only exactly on top of the other filled square of stones or rock, moreover
the squares immediately to the bottom-left and to bottom-right of it should be already filled.

Existing landscape
Improved landscape

Your task is to help The Chief Landscape Manager to determine the maximum height of the highest
mountain he can build.

Input
The first line of the input file contains two integers w — the width of the existing landscape and n —
the maximum number of squares of stones to add (1 ≤ w ≤ 100 000, 0 ≤ n ≤ 1018).

Each of the following w lines contains a single integer hi — the height of the existing landscape column
(1 ≤ hi ≤ 109).

Output
The output file shall contain the single integer — the maximum possible landscape height after at most
n unit squares of stones are added in a stable way.

Sample input and output

landscape.in landscape.out

8 4

3

4

2

1

3

3

2

4

5

3 100

3

3

3

4

Page 14 of 14


