
ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem A. Accumulator Apex
Time limit: 3 seconds
Memory limit: 1024 megabytes

Allyn is playing a new strategy game called “Accumulator Apex”. In this game, Allyn is given the initial
value of an integer x, referred to as the accumulator, and k lists of integers. Allyn can make multiple
turns. On each turn, Allyn can withdraw the leftmost element from any non-empty list and add it to the
accumulator x if the resulting x is non-negative. Allyn can end the game at any moment. The goal of the
game is to get the largest possible value of the accumulator x. Please help Allyn find the largest possible
value of the accumulator x they can get in this game.

Input
The first line of the input contains two integers x and k (0 ≤ x ≤ 109, 1 ≤ k ≤ 105) — the initial value of
the accumulator x and the number of lists. The next k lines contain the description of lists: an integer li
(li ≥ 1) followed on the same line by li elements of the list in the order from left to right. Each element
of lists does not exceed 109 by the absolute value, and the total size of all lists does not exceed 105.

Output
The sole line of the output should contain the largest value of the accumulator x Allyn can get.

Examples
standard input standard output

1 3

2 -1 2

2 -2 3

2 -3 4

4

1 2

3 -1 -1 4

4 1 -3 -4 8

4

Note
In the first input, we start with x = 1. Then, we can take the first integer from the first list and get
x = 0 — adding the next integer 2 from the first list we get x = 2. After that, we can add the integers
from the second list and obtain x = 3. Finally, we can add the integers from the third list and obtain
x = 4.

In the second input, we can add the first integer from the second list and get x = 2. Then, by adding the
elements from the first list, we get x = 4. We cannot add more integers to increase x.

Page 1 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem B. Blueprint for Seating
Time limit: 3 seconds
Memory limit: 1024 megabytes

An aircraft manufacturing company wants to optimize their products for passenger airlines. The company’s
latest research shows that most of the delays happen because of slow boarding.

Most of the medium-sized aircraft are designed with 3-3 seat layout, meaning each row has 6 seats: 3 seats
on the left side, a single aisle, and 3 seats on the right side. At each of the left and right sides there is
a window seat, a middle seat, and an aisle seat. A passenger that boards an aircraft assigned to an aisle
seat takes significantly less time than a passenger assigned to a window seat even when there is no one
else in the aircraft.

The company decided to compute an inconvenience of a layout as the total sum of distances from each
of the seats of a single row to the closest aisle. The distance from a seat to an aisle is the number of seats
between them. For a 3-3 layout, a window seat has a distance of 2, a middle seat — 1, and an aisle seat —
0. The inconvenience of a 3-3 layout is (2 + 1 + 0) + (0 + 1 + 2) = 6. The inconvenience of a 3-5-3 layout
is (2 + 1 + 0) + (0 + 1 + 2 + 1 + 0) + (0 + 1 + 2) = 10.

Formally, a layout is a sequence of positive integers a1, a2, . . . , ak+1 — group i having ai seats, with k
aisles between groups, the i-th aisle being between groups i and i+ 1. This means that in a layout each
aisle must always be between two seats, so no aisle can be next to a window, and no two aisles can be
next to each other.

The company decided to design a layout with a row of n seats, k aisles and having the minimum
inconvenience possible. Help them find the minimum inconvenience among all layouts of n seats and
k aisles, and count the number of such layouts modulo 998 244 353.

Input
The first line contains an integer t — the number of test cases you need to solve (1 ≤ t ≤ 105).

For each of the test cases, there is a single line containing n and k — the number of seats, and the number
of aisles in a row (2 ≤ n ≤ 109; 1 ≤ k ≤ 105; k < n).

The total sum of k in all t given test cases does not exceed 106.

Output
For each test case print two integers — the minimum inconvenience among all possible layouts, and the
number of layouts with the minimum inconvenience modulo 998 244 353.

Example
standard input standard output

8

4 1

3 2

4 2

5 2

6 1

6 2

1000000000 1

9 2

2 1

0 1

0 1

1 3

6 1

2 4

249999999500000000 1

6 3

Note
In the last test case of 9 2 the possible layouts with the minimum inconvenience of 6 are 3-4-2, 2-4-3, and
2-5-2.

Page 2 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem C. Cactus Transformation
Time limit: 3 seconds
Memory limit: 1024 megabytes

In the university, Caroline started to learn about cactus graphs. Her teacher wanted to check whether
the students really understood the definition of a cactus or not and gave them the following problem as
a home assignment:

You are given two cactuses with the same number of vertices and edges. Your task is to answer whether
it is possible to transform the first cactus into the second one using only the following two-step operation
at most 15 000 times:

• Pick an arbitrary edge from the first cactus and remove it (note that after this action, it’s not
necessary that graph is a cactus);

• Add an arbitrary non-existing edge into the first graph, so that the graph becomes a cactus.

Note that the operation consists of both actions, so you must apply both actions.

It’s guaranteed that if it’s possible to transform the first cactus into the second one, then it can be done
by using at most 15 000 operations.

The teacher promised to give a perfect grade without an exam to anyone who solved the problem. Since
the given cactuses are big and Caroline can’t solve the problem independently in this short period of time,
she asked you to help her write a program that solves the problem.

A cactus is a connected undirected graph in which every edge lies on at most one simple cycle. Intuitively,
a cactus is a generalization of a tree where some cycles are allowed. Multiedges (multiple edges between
a pair of vertices) and loops (edges that connect a vertex to itself) are not allowed in a cactus.

Two cactuses are called same if for any pair of vertices v and u (1 ≤ v < u ≤ n), either there exists an
edge (v, u) in both cactuses or does not.

Input

The first line contains two integers n and m (3 ≤ n ≤ 1000, n−1 ≤ m ≤ ⌊3(n−1)
2 ⌋) — the number of vertices

and edges in the cactuses. Each of the next 2 ·m lines contains two integers u and v (1 ≤ u ̸= v ≤ n) —
the edges of the cactuses. The first m lines represent the first cactus, while the second m lines represent
the second cactus.

Output
If transforming the first cactus into the second one is impossible, output the single line with the word
“NO”.

Otherwise, in the first line output the single word “YES”. In the second line output an integer c
(0 ≤ c ≤ 15 000) — the number of operations. Each of the following c lines should contain four integers
wi (1 ≤ i ≤ 4, 1 ≤ wi ≤ n). The first two integers (w1, w2) represent the vertices of the removed edge,
while the last two integers (w3, w4) represent the vertices of the added edge.

Page 3 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Examples
standard input standard output Illustration

5 5

1 2

3 1

2 4

3 4

4 5

1 2

3 2

3 1

4 1

3 5

YES

3

3 4 2 3

5 4 3 5

2 4 1 4

1 3

2 4 5

1 3

2 4 5

1 3

2 4 5

1 3

2 4 5

5 6

1 2

2 3

1 3

4 3

3 5

5 4

1 2

2 4

4 1

4 3

3 5

4 5

NO 1 3

2 4 5

1 3

2 4 5

Page 4 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem D. Divisibility Test
Time limit: 3 seconds
Memory limit: 1024 megabytes

Daisy has recently learned divisibility rules for integers and she is fascinated by them. One of the tests
she learned is a divisibility test by 3. You can find a sum of all digits of a decimal number and check if the
resulting sum is divisible by 3. Moreover, the resulting sum of digits is congruent modulo 3 to the original
number — the remainder modulo 3 is preserved. For example, 75 ≡ 7 + 5 (mod 3). Daisy is specifically
interested in such remainder preserving divisibility tests.

There are more examples like that that she learned for decimal integers (integers base 10):
• To test divisibility modulo 11, find an alternating sum of digits. Counting digits from the last (least

significant) digit, add digits on odd positions (the last, 3rd to the last, etc) and subtract digits on
even positions (2nd to the last, 4th to the last, etc) to get the sum that is congruent modulo 11 to
the original number. For example, 123 ≡ 1− 2 + 3 (mod 11).

• To test divisibility modulo 4, keep the last two digits. Their value is congruent modulo 4 to the
original number. For example, 876543 ≡ 43 (mod 4).

• To test divisibility modulo 7, find an alternating sum of groups of three digits. For example,
4389328 ≡ 4− 389 + 328 (mod 7).

Similar tests can be found in other bases. For example, to test divisibility modulo 5 for octal numbers
(base 8), find an alternating sum of groups of two digits. For example, 12348 ≡ −128 + 348 (mod 5).

Daisy wants to find such rules for a given base b. She is interested in three kinds of divisibility rules:
• Kind 1 — take the last k digits of an integer in base b.
• Kind 2 — take a sum of groups of k digits of an integer in base b.
• Kind 3 — take an alternating sum of groups of k digits of an integer in base b.

It is not always possible to find such a divisibility rule. For example, in base 10 there is no such test for
divisibility modulo 6, even though different approaches to testing divisibility by 6 exist.

Given base b and modulo n, Daisy wants to know the smallest group size k for which such a divisibility
test exits.

Input
There are several tests in the input. The first line of the input contains an integer t — the number of tests.
The next t lines describe the tests.

Each test consists of a line with two integers b and n — the base and the modulo (b, n ≥ 2). The sum of
all b values in the input does not exceed 106, and the sum of all n values in the input does not exceed 106.

Output
Write t lines — a line for each test in the input. On a line for a test write a single integer 0 if the divisibility
test for a given b and n does not exist. Otherwise, write two integers a and k, where a is the kind of the
divisibility test (1, 2, or 3) and k is the number of digits in a group for the test, such that k is the lowest
among all possible divisiblity tests for the given b and n.

Example
standard input standard output

6

10 3

10 11

10 4

10 7

8 5

10 6

2 1

3 1

1 2

3 3

3 2

0

Page 5 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem E. Evaluate It and Back Again
Time limit: 3 seconds
Memory limit: 1024 megabytes

Aidan and Nadia are long-time friends with a shared passion for mathematics. Each of them has a favorite
number: Aidan’s favorite number is p, and Nadia’s is q.

To commemorate their friendship, their friends want to make a present: a plaque with an arithmetic
expression whose value is equal to their favorite numbers. At first glance, it sounds impossible, but the
answer is simple: Aidan reads left-to-right, while Nadia reads right-to-left, so the same expression can have
different values for them.

For example, if 2023-12-13 is written on the plaque, then Aidan would calculate the result as
2023− 12− 13 = 1998, and Nadia would calculate it as 31− 21− 3202 = −3192.

Find an arithmetic expression that, when read left-to-right, evaluates to p, and, when read right-to-left,
evaluates to q. Its length must be at most 1000 characters. It’s guaranteed that such an expression exists
for all valid inputs.

Input
The first line of the input contains two integers p and q (−1018 ≤ p, q ≤ 1018).

Output
Print the expression without spaces or line breaks. It can only contain digits 0 through 9, ‘+’, ‘-’, and ‘*’
characters.

The expression must contain at most 1000 characters. Leading zeros in numbers are not allowed (the only
exception is the notation ‘0’ representing the number 0) in both the expression and its reverse. Use of
unary ‘+’ or ‘-’ is not allowed. The expression must be well-formed in both directions. The calculation
uses the standard operator precedence.

Examples
standard input standard output

1998 -3192 2023-12-13

413 908 12*34+5

Page 6 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem F. Fugitive Frenzy
Time limit: 5 seconds
Memory limit: 1024 megabytes

The city of F. can be represented as a tree. A famous fugitive is hiding in it, and today a faithful police
officer decided to catch him at all costs. The police officer is stronger than the fugitive, but the fugitive is
much faster than the former. That is why the pursuit proceeds as follows. At the moment t = 0 the police
officer appears at the vertex with number s, and the fugitive spawns at any other vertex of his choice.
After that, they take turns, starting with the police officer.

• During the police officer’s move, she selects any vertex adjacent to the one where she is currently
located and moves there. The police officer spends one minute moving. Also, the police officer may
decide to stand still instead, in which case she waits one minute at the vertex at which she started
her move. If at the end of the turn the police officer ends up at the same vertex as the fugitive, she
instantly catches him and the chase ends.

• The fugitive’s move is as follows. Let him be at vertex b, and the police officer at vertex p. Then the
fugitive chooses any vertex b′ ̸= p such that the path between the vertices b and b′ does not contain
vertex p and instantly moves there. In particular, he can always choose b′ = b to stay where he is.
The fugitive’s move takes no time.

Note that the fugitive managed to attach a radio bug to the police officer’s badge a week ago, so the
fugitive knows the location of the police officer at every moment (in particular, he knows the number s).
On the contrary, the police officer knows nothing about the fugitive’s movements and will only be able to
detect him at the very moment she catches him.

The police officer aims to catch the fugitive as fast as possible, and the fugitive aims to be caught as late
as possible. Since the chase can be thought of as a game with incomplete information, participants can
use mixed (probabilistic) strategies — thus, the police officer acts to minimize the expected duration of
the chase, and the fugitive — to maximize it.

Find the mathematical expectation of the duration of the chase with optimal actions of the police officer
and the fugitive. It can be proven that it is always finite. In particular, with optimal strategies, the
probability that the chase continues indefinitely is equal to zero.

Input
The first line contains an integer n — the number of vertices in the tree (2 ≤ n ≤ 100). The next n − 1
lines describe the city of F.: each of them contains a pair of integers ui, vi — the numbers of the ends of
an edge (1 ≤ ui, vi ≤ n). These edges are guaranteed to form a tree.

The last line contains an integer s — the number of the vertex where the police officer initially appears
(1 ≤ s ≤ n).

Output
Print one real number — the mathematical expectation of the duration of the chase with the optimal
strategies of the police officer and the fugitive. Your answer will be accepted if its absolute or relative
error does not exceed 10−6; formally, if p is your answer, and j is the jury’s answer, this should hold:

|p−j|
max{1,|j|} ≤ 10−6.

Page 7 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Examples
standard input standard output

2

1 2

2

1

3

1 2

1 3

1

2

4

4 3

4 1

4 2

4

3.66667

7

1 4

4 5

5 2

4 6

6 7

7 3

3

8.3525

Note
The trees from the examples are depicted below.

1 2

12 3

1

2

34

1

2 345 6 7

Page 8 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem G. Great City Saint Petersburg
Time limit: 5 seconds
Memory limit: 1024 megabytes

Saint Petersburg is the most beautiful city in the world unless it is raining. For the sake of this problem,
we will assume it is raining every single day.

One of the streets in Saint Petersburg has an unusual shape — it is a narrow stripe of n sections 1 meter
long each, where section i is at the height ai meters from the ground. The stripe is 1 meter deep and
bounded on the front and on the back by incredibly high buildings. Because of this, when it is raining,
a certain amount of rain will accumulate, unable to flow out of the street from either its leftmost or
rightmost end. Given the heights a1, a2, . . . , an, you need to determine the amount of rain (in cubic
meters) which will accumulate on the street.

Moreover, your colleagues from the metropolitan construction company will be visiting for q days and on
day i they will be laying asphalt on all sections from li to ri inclusive, thus increasing the height of each
section li, li + 1, . . . , ri by 1 meter. You need to determine the total amount of water which accumulates
on the street before the construction works, and also after every single day of the construction works.

Input
The first line contains the number of blocks n and the number of construction events q (1 ≤ n, q ≤ 2 ·105).
The second line contains n integers a1, a2, . . . , an (1 ≤ ai ≤ 109) — the height of each section before all
the events. Each of the following q lines contains a pair of integers li, ri (1 ≤ li ≤ ri ≤ n), denoting the
construction work from li to ri inclusive.

Output
Print q + 1 integers — the amount of water on the street before all updates, and also after every update.

Examples
standard input standard output

5 4

3 2 1 2 3

1 5

2 4

1 2

5 5

4

4

1

1

3

7 3

1 1000000000 1 1 1 1000000000 1

1 3

4 5

5 7

2999999997

2999999996

2999999994

2999999996

Note
The picture illustrates the amount of water accumulating on the street in the first example.

Page 9 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem H. Hypercatapult Commute
Time limit: 3 seconds
Memory limit: 1024 megabytes

A revolutionary new transport system is currently operating in Byteland. This system requires neither
roads nor sophisticated mechanisms, only giant catapults.

The system works as follows. There are n cities in Byteland. In every city there is a catapult, right in the
city center. People who want to travel are put in a special capsule, and a catapult throws this capsule to
the center of some other city. Every catapult is powerful enough to throw the capsule to any other city,
with any number of passengers inside the capsule. The only problem is that it takes a long time to charge
the catapult, so it is only possible to use it once a day.

The passenger may need to use the catapults multiple times. For example, if the passenger wants to travel
from city A to city B, they can first use one catapult to move from A to C, and then transfer to another
catapult to move from C to B.

Today there are m passengers. Passenger i wants to travel from city ai to city bi. Your task is to find the
way to deliver all the passengers to their destinations in a single day, using the minimal possible number
of catapults, or say that it is impossible.

Input
The first line of the input contains two integers n and m (1 ≤ n ≤ 1000, 0 ≤ m ≤ 105) — the number of
cities and the number of passengers. The next m lines contain pairs of numbers ai and bi (1 ≤ ai, bi ≤ n,
ai ̸= bi).

Output
In the first line print the number k — the minimal number of catapults you need to use.

In the next k lines, print descriptions of each catapult launch, in the order they need to be performed.
Each description should consist of two integers ci, di, the index of the city to launch from, and the index
of destination city.

Note that you don’t need to print what passengers should be put into the capsule on each launch, but it
should be possible for each passenger to reach their destination city using the plan you provide.

If it is impossible to deliver all passengers, print the single number −1.

Examples
standard input standard output

5 6

1 3

1 2

2 3

4 2

1 5

5 1

5

5 1

1 2

4 2

2 3

3 5

3 6

1 2

1 3

2 1

2 3

3 1

3 2

-1

Page 10 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem I. Innovative Washing Machine
Time limit: 3 seconds
Memory limit: 1024 megabytes

You are asked to help a team that participates in “Innovation Workshop” — an event where teams of
students invent and prototype their innovative ideas. One of the teams developed a new innovative washing
machine that significantly reduces the usage of energy needed for laundry.

The innovative idea was to use a convex polygon instead of a circle for the shape of a washing machine
drum. You are given this polygon. A drum is rotating around some fixed point inside the polygon with a
constant speed of 1 turn in 1 second.

Currently, the prototype is built and testing is started. There are s litres of water in the drum. At each
moment of time, water under the influence of gravity occupies a region with area s at the bottom of the
drum.

Vertices of the polygon that are underwater are under pressure. By Pascal’s law, we know that pressure
is proportional to depth. Let’s define by d1, d2, . . . , dk depths of the vertices that are underwater at
some moment of time, k is the number of underwater vertices. Let’s define the pressure imbalance as
the average difference between underwater vertex depth and the maximum underwater vertex depth, i.e.
1
k

k∑
i=1

(
k

max
j=1

dj − di

)
. Note that the order of di is not important.

d1

d2

d3
d4

d5

1

2

3

4

5

6

7

8

The polygon from the third test case is rotated. Vertices 1, 2, 3, 4, 8 are underwater.

To select the optimal shape of the drum, the team wants to know the expected value of pressure imbalance
for the moment of time selected uniformly from segment [0, 1] (in seconds). Please help the team to
calculate this value.

Input
The first line contains a single integer t (1 ≤ t ≤ 104) — the number of test cases. The next lines contain
descriptions of test cases.

The first line contains two integers n, s (3 ≤ n ≤ 2 · 105, s ≥ 1) — the number of vertices in the polygon
and the number of litres of water inside the drum. It is guaranteed that s is less than the area of the
polygon.

Each of the next n lines contains two integers xi, yi (|xi|, |yi| ≤ 108) — coordinates of polygon vertices.

It is guaranteed that the given points form a convex polygon. The area of the polygon is positive and no
two consecutive segments are collinear. The vertices of the polygon are given in counterclockwise order.

Page 11 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

The sum of n for all test cases does not exceed 2 · 105.

Output
For each test case, print a single real number — the expected value of pressure imbalance for a random
uniform moment of time.

Your answer will be accepted if its absolute or relative error does not exceed 10−5; formally, if p is your
answer, and j is the jury’s answer, this should hold: |p−j|

max{1,|j|} ≤ 10−5.

Example
standard input standard output

4

4 2

0 0

2 0

2 2

0 2

3 1

1 -1

0 1

-1 -1

8 18

-2 1

-2 -3

-1 -4

0 -4

3 -3

4 -1

4 0

-1 2

4 1

99999998 99999999

99999999 99999998

100000000 99999999

99999999 100000000

0.3729232286

0.1379212354

1.3663189952

0.2636965438

Page 12 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem J. Joy of Pokémon Observation
Time limit: 3 seconds
Memory limit: 1024 megabytes

The Pokémon Conservation Society protects Pokémon and their habitats all around the globe. In recent
research, data about h habitats was collected.

Each habitat may be inhabited by several Pokémon species. Researchers know how many limbs each
species has. Pokémon are swift and extremely good at hiding, so researchers were only able to detect the
total number of limbs in each of the habitats.

Researchers understand that it might not be possible to find the population of each species, but would
like to understand how much uncertainty is left. How many different combinations of Pokémon would
have the observed number of limbs?

Input
The first line contains a single integer h (1 ≤ h ≤ 1 024) — the number of habitats. The next h lines
contain the description of each habitat.

Each line starts with two integers t and s (0 ≤ t ≤ 109, 1 ≤ s ≤ 3), where t is the total number of limbs,
and s is the number of species in the habitat. They are followed by s integers li (1 ≤ li ≤ 16) — the
number of limbs for each species.

Output
Output the number of possible combinations of Pokémon in each habitat. Output should contain h lines
with a single integer.

Examples
standard input standard output

3

6 1 3

6 2 2 3

6 3 1 2 3

1

2

7

4

1000000000 3 1 1 1

0 3 2 4 5

17 2 2 4

34 3 5 3 2

500000001500000001

1

0

25

Note
For the sake of example we will use LATEX Pokémon: O̧ has one limb, ∠ has two limbs, ∃ has three limbs.
In the first example all three habitats have 6 limbs.

In the first example the first habitat has only one Pokémon species — ∃. So it is likely the young family
containing ∃∃.

In the second habitat there are two Pokémon species: ∠ and ∃. So it is either ∠∠∠ or ∃∃.

The third habitat may contain any of the three Pokémon species: O̧, ∠ and ∃. There are seven possible
combinations: ∃∃, ∠∠∠, O̧∠∃, O̧O̧∠∠, O̧O̧O̧∃, O̧O̧O̧O̧∠, O̧O̧O̧O̧O̧O̧.

In the second example the first habitat has three Pokémon species, but all of them have only one limb:
∂, O̧ and ρ. There are 109 limbs and

∑i≤109

i=0 (i+ 1) combinations.

In the second habitat no limbs were detected. So there are unfortunately no Pokémon left in the area.

In the third habitat all Pokémon have an even number of limbs, so it is not possible to have 17 limbs.

Page 13 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem K. Kim’s Quest
Time limit: 3 seconds
Memory limit: 1024 megabytes

In the long-forgotten halls of Kombinatoria’s ancient academy, a gifted mathematician named Kim is
faced with an unusual challenge. They found an old sequence of integers, which is believed to be a cryptic
message from the legendary Kombinatoria’s Oracle, and Kim wants to decipher its hidden meaning.

Kim’s mission is to find specific patterns within the sequence, known as Harmonious Subsequences. These
are extraordinary subsequences where the sum of every three consecutive numbers is even, and each
subsequence must be at least three numbers in length.

Given a sequence ai (1 ≤ i ≤ n) of length n, its subsequence of length m is equal to ab1 , ab2 , . . . , abm and
is uniquely defined by a set of m indices bj , such that 1 ≤ b1 < b2 < . . . < bm ≤ n. Subsequences given
by different sets of indices bj are considered different.

There’s a twist in Kim’s quest: the number of these Harmonious Subsequences could be overwhelming.
To report the findings effectively, Kim must calculate the total number of these subsequences, presenting
the answer as a remainder after dividing by the number 998 244 353.

Input
The first line contains a single integer n — the length of the sequence (3 ≤ n ≤ 2 · 105).
The second line contains n space-separated integers ai — the elements of the sequence (1 ≤ ai ≤ 2 · 105).

Output
Output one number — the number of Harmonious Subsequences, modulo 998 244 353.

Examples
standard input standard output

3

1 2 3

1

5

2 8 2 6 4

16

5

5 7 1 3 5

0

11

3 1 4 1 5 9 2 6 5 3 6

386

54

2 1 1 1 1 2 1 2 2 2 2 1 1 1 2 1 1 2

2 1 2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 1

2 2 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 1

0

Note
In the provided input data for the fifth sample, the sequence of numbers is split into three separate lines
for clarity, but it should be understood that in the actual test data, the sequence is given in one line. The
actual number of Harmonious Subsequences in this example is 4 991 221 765 = 5× 998 244 353, hence the
output is zero as a result of finding its remainder after dividing by the number 998 244 353.

Page 14 of 15

ICPC 2023–2024, NERC – Northern Eurasia Finals
St. Petersburg, Novosibirsk, Astana, Kutaisi, December 13th, 2023

Problem L. LOL Lovers
Time limit: 3 seconds
Memory limit: 1024 megabytes

There are n food items lying in a row on a long table. Each of these items is either a loaf of bread (denoted
as a capital Latin letter ‘L’ with ASCII code 76) or an onion (denoted as a capital Latin letter ‘O’ with
ASCII code 79). There is at least one loaf of bread and at least one onion on the table.

You and your friend want to divide the food on the table: you will take a prefix of this row (several
leftmost items), and the friend will take the rest. However, there are several restrictions:

1. Each person should have at least one item.

2. The number of your loaves should differ from the number of your friend’s loaves.

3. The number of your onions should differ from the number of your friend’s onions.

Find any correct division and print the number of items you take or report that there is no answer.

Input
The first line contains one integer n (2 ≤ n ≤ 200) — the number of food items on the table. The second
line contains a string of length n consisting of letters ‘L’ and ‘O’. i-th symbol represents the type of the
i-th food item on the table: ‘L’ stands for a loaf of bread, and ‘O’ stands for an onion. It is guaranteed
that this string contains at least one letter ‘L’ and at least one letter ‘O’.

Output
Print one integer — a number k such that, if you take k leftmost items and your friend takes the remaining
n−k items, each of you and your friend get at least one item, your number of loaves is different from your
friend’s, and your number of onions is different from your friend’s. If there are several possible answers,
print any of them. If there are no possible answers, print the number −1.

Examples
standard input standard output

3

LOL

-1

2

LO

1

4

LLLO

1

4

OLOL

-1

10

LLOOOOLLLO

5

Note
In the first example, in any division the left and the right part contain one loaf of bread.

In the second example, the division is ‘L’ and ‘O’, and in these two strings the number of loaves is different
(1 and 0) and the number of onions is different (0 and 1).

In the third example, any number 1, 2 or 3 is a correct answer.

Page 15 of 15

