
Hunting Hoglins in Hogwarts
Problem author and developer: Tikhon Evteev

The main idea is to not do the binary search. If you try, you will probably end up with about 400 caught
hoglins, which is not enough.

Instead we will maintain the set of disjoint segments s1, . . . , sk of approximately equal length. i.e.
||si| − |sj || ≤ 1. After each iteration of the algorithm, it will hold that the hoglin is in one of those
segments, and this segment is also the segment that the hoglin considers accessible. We will also keep
track of the probabilities that the hoglin is in each of these segment, and denote them as pi. We will
reorder the segments so that p1 ≥ p2 ≥ · · · ≥ pk.

From this point on we will not keep track of the fact that the segments are of approximately equal length,
and write as if they were of exactly equal length. We will also not mention, that if at any point of the
interaction we catch the hoglin, we should immediately stop and restart the process.

Initially the hoglin is in a segment s1 = [1, n] with the probability p1 = 1.

For the iteration of the algorithm we will go through the segments in order from 1 to k and block the
midpoint of the corresponding segment. If the interactor returns 1 after we block the midpoint of the j-th
segment, than the hoglin was in one of the segments s1, . . . sj and now is in one of the 2 · j new segments,
each of which is approximately two times smaller than the segments in the previous iteration. If we don’t
get a 1 after we block the last midpoint, we will just wait for it by sending 0, and let j = k.

Let’s for now denote these segments as s11, s
2
1, s

1
2, s

2
2, . . . , s

1
j , s

2
j , and compute the probabilities

p11, p
2
1, p

1
2, p

2
2, . . . , p

1
j , p

2
j with which the hoglin is in each of these segments.

The conditional probability that we will get a 1 after blocking the j-th midpoint, if the hoglin initially
was in the i-th segment is P (Rj |Wi) =

1
2j−i+1 , thus the probability that it is now in either of the segments

s1i or s2i by Bayes’ theorem is p1i + p2i = P (Wi) =
pi·P (Ri|Wi)

P (Ri)
= pi·P (Ri|Wi)

j∑
l=1

pl·P (Rl|Wl)

.

So we can recompute the probabilities pi for the next step and continue the algorithm.

Now to prove the asymptotics we can prove by induction that the sequence p1, . . . pk looks like
p, . . . p, p2 , . . .

p
2 ,

p
4 , . . .

p
4 , More over, each sequence of the form p

2l
, . . . p

2l
is at most 4 elements long.

To show that we will use the fact that p1i = p2i ∝ pi · P (Ri|Wi) = pi
2j−i . Not strictly: the sequence

of probabilities is multiplied by the sequence 2i, and then each one is duplicated and the sequense is
normalized. Thus the sequence on the equal probabilities is no longer than 4, and the probabilities are
increasing exponentially.

Knowing that, we do not need to maintain the probabilities pi to sort the segments in the right order,
because we can just reverse the order of segments after each iteration and it will maintain the right order.

Also knowing the exponentially decreasing nature of pi we can see that the expected value of the number
of queries for each iteration is at most 1 · p+ 2 · p+ 3 · p+ 4 · p+ 5 · p2 + 6 · p2 + . . ., where p = 1

8 , which is
5
2 + 4 = 61

2 . Since there are at most log2 n iteration, the solution works in at most 61
2 · log2 n queries per

hoglin on average.

The problem demands no more then about 4.2 · log2 n queries per hoglin, but one can see how our analysis
was only a rough upper bound on the number of queries. In reality, the solution works in about 3.9 · log2 n
queries per hoglin, which leaves more then enough room for variance.

Page 1 of 1

