DAG Serialization

Time limit: 3 seconds
Memory limit: 1024 megabytes

Consider a simple single-bit boolean register that supports two operations:

e set — sets the register to true if it was false, and returns true; otherwise, it returns false;
e unset — sets the register to false if it was true, and returns true; otherwise, it returns false.

The initial state of the register is false. Suppose there were n operations op; (for 1 < i < n) where at
most two operations returned true. Also, we are given the partial order of operations as a directed
acyclic graph (DAG): an edge i — j means that op; happened before op;. You are asked whether it is
possible to put these operations in some linear sequential order that satisfies the given partial order and
such that if operations are applied to the register in that order, their results are the same as given.

Input

In the first line, you are given an integer n — the number of operations (1 < n < 10%). In the following
n lines, you are given operations in the format “type result”, where type is either “set” or “unset” and
result is either “true” or “false”. It is guaranteed that at most two operations have “true” results.

In the next line, you are given an integer m — the number of arcs of the DAG (0 < m < 10%). In the
following m lines, you are given arcs — pairs of integers a and b (1 < a,b < n; a # b). Each arc indicates
that operation op, happened before operation opy.

Output

Print any linear order of operations that satisfies the DAG constraints and ensures the results of the
operations match the ones given in the input. If a correct operation order does not exist, print —1.

Examples

standard input standard output
5 51324
set true

unset true
set false
unset false
unset false
2

14

5 2

3 231
unset true
unset false
set true

0

2 -1
unset false
set true

1

21

2 -1
unset false

set false
0

Page 1 of 1



