Грин-де-Вальд задумал захватить министерство магии. Для этого он разработал план слежки. Грин-де-Вальд пошлёт своих нюхлей-шпионов в разные отделы министерства. Всего у него $$$n$$$ нюхлей, $$$i$$$-й из которых должен попасть в отдел на этаже $$$f_i$$$.
Согласно плану, нюхли пробираются в здание, садятся в один лифт и едут на свои этажи. Но вот незадача: не все нюхли достаточно высокие, чтобы дотянуться до кнопки своего этажа! Кнопки в лифте расположены в ряд. Кнопка первого этажа находится на высоте $$$h$$$, кнопка второго этажа находится на высоте $$$h + 1$$$, и т.д. Кнопка этажа с номером $$$k$$$ находится на высоте $$$h + k - 1$$$. Нюхль с номером $$$i$$$ имеет высоту $$$g_i$$$. Нюхль способен нажать на кнопку, только если его высота не меньше высоты кнопки.
Так как не всегда возможно сделать так, что $$$i$$$-й нюхль попадет на этаж $$$f_i$$$, Грин-де-Вальд скажет каждому нюхлю, на каком этаже ему нужно выйти. После этого нюхль пойдет пешком по лестнице. Нюхли довольно умные существа, так что Грин-де-Вальд может научить их нажимать на правильные кнопки. Но он не хочет перегружать их информацией, чтобы они ничего не забыли, поэтому нюхль выйдет из лифта, как только лифт окажется на нужном ему этаже.
Изначально нюхли садятся в лифт на первом этаже. Кто-то из нюхлей нажимает на кнопку, и лифт едет на соответствующий этаж. После этого все нюхли, которым нужно выйти на этом этаже, выходят из лифта. После этого кто-то их оставшихся нюхлей нажимает на кнопку снова и процесс повторяется. Если кто-то их нюхлей увидит, что лифт проехал мимо этажа, на котором ему нужно выйти, он перепугается и забудет весь план, поэтому так делать не нужно. Лифт в министерстве устроен таким образом, что нажать на кнопку этажа возможно только при закрытой двери, поэтому нюхль не может доехать до нужного ему этажа, нажать на кнопку следующего этажа и быстро выйти из лифта.
В шпионском ремесле очень важна скрытность, поэтому Грин-де-Вальд хочет минимизировать шанс обнаружения нюхлей. Для этого нужно, чтобы количество этажей, которое пройдут нюхли по лестнице, было как можно меньше. Помогите Грин-де-Вальду найти минимальное суммарное количество этажей, которое пройдут нюхли по лестнице.
В первой строке записаны два целых числа $$$n$$$ и $$$h$$$ — количество нюхлей и высота, на которой расположена кнопка первого этажа ($$$1 \le n \le 100\,000$$$, $$$1 \le h \le 10^9$$$).
Следующие $$$n$$$ строк описывают нюхлей. $$$i$$$-я из них содержит два целых числа $$$g_i$$$ и $$$f_i$$$ — высота $$$i$$$-го нюхля и этаж, на котором находится нужный ему отдел ($$$1 \le g_i, f_i \le 10^9$$$).
В единственной строке выведите одно число — минимальное количество этажей, которое придется пройти нюхлям пешком по лестнице.
3 2 5 2 6 4 10 1
0
1 5 7 4
1
3 10 30 17 1 4 3 8
0
В первом примере каждый нюхль способен дотянуться до кнопки своего этажа, поэтому им не придется ходить по лестнице.
Во втором примере нюхль может дотянуться только до кнопки третьего этажа, поэтому один этаж ему придется пройти пешком.
В третьем примере первый нюхль может нажимать на кнопки, нужные остальным нюхлям, довезти их до нужных этажей, после чего сам доехать до нужного ему этажа.