
Memory management for lock-free data
structures : an exercise

The following is the enqueue method from the lock-free queue of Michael and Scot (see
https://www.research.ibm.com/people/m/michael/podc-1996.pdf) 

	
	
In this exercise we shortly discuss the challenges in creating memory management for
the queue. The enqueue method is the more challenging to work with among the queue
methods.

A. Epochs

1. Explain what should be added the code to make sure that the memory reclamation
works well.

B. Hazard Pointers  1. Explain where one needs to protect a pointer with
hazard pointers 2. Describe a setting in which reclaiming without using
hazard pointers will create a  problematic race.  

C. Optimistic Access  

1. Propose a memory reclamation that protects writes to the data structure with hazard
pointers, but does not use hazard pointers to protect read values. Instead,  uses
optimistic access to validate the read values.

	

structure pointer t ptr: pointer to node t, count: unsigned integer
structure node t value: data type, next: pointer t
structure queue t Head: pointer t, Tail: pointer t

initialize(Q: pointer to queue t)
node = new node() # Allocate a free node
node–>next.ptr = NULL # Make it the only node in the linked list
Q–>Head = Q–>Tail = node # Both Head and Tail point to it

enqueue(Q: pointer to queue t, value: data type)
E1: node = new node() # Allocate a new node from the free list
E2: node–>value = value # Copy enqueued value into node
E3: node–>next.ptr = NULL # Set next pointer of node to NULL
E4: loop # Keep trying until Enqueue is done
E5: tail = Q–>Tail # Read Tail.ptr and Tail.count together
E6: next = tail.ptr–>next # Read next ptr and count fields together
E7: if tail == Q–>Tail # Are tail and next consistent?
E8: if next.ptr == NULL # Was Tail pointing to the last node?
E9: if CAS(&tail.ptr–>next, next, <node, next.count+1>) # Try to link node at the end of the linked list
E10: break # Enqueue is done. Exit loop
E11: endif
E12: else # Tail was not pointing to the last node
E13: CAS(&Q–>Tail, tail, <next.ptr, tail.count+1>) # Try to swing Tail to the next node
E14: endif
E15: endif
E16: endloop
E17: CAS(&Q–>Tail, tail, <node, tail.count+1>) # Enqueue is done. Try to swing Tail to the inserted node

dequeue(Q: pointer to queue t, pvalue: pointer to data type): boolean
D1: loop # Keep trying until Dequeue is done
D2: head = Q–>Head # Read Head
D3: tail = Q–>Tail # Read Tail
D4: next = head–>next # Read Head.ptr–>next
D5: if head == Q–>Head # Are head, tail, and next consistent?
D6: if head.ptr == tail.ptr # Is queue empty or Tail falling behind?
D7: if next.ptr == NULL # Is queue empty?
D8: return FALSE # Queue is empty, couldn’t dequeue
D9: endif
D10: CAS(&Q–>Tail, tail, <next.ptr, tail.count+1>) # Tail is falling behind. Try to advance it
D11: else # No need to deal with Tail

Read value before CAS, otherwise another dequeue might free the next node
D12: *pvalue = next.ptr–>value
D13: if CAS(&Q–>Head, head, <next.ptr, head.count+1>) # Try to swing Head to the next node
D14: break # Dequeue is done. Exit loop
D15: endif
D16: endif
D17: endif
D18: endloop
D19: free(head.ptr) # It is safe now to free the old dummy node
D20: return TRUE # Queue was not empty, dequeue succeeded

Figure 1: Structure and operation of a non-blocking concurrent queue.

