Lock-free algorithms for
Kotlin coroutines

It is all about scalability
Presented at SPTCC 2017

/Roman Elizarov @ JetBrains

Speaker: Roman Elizarov

* 16+ years experience

* Previously developed high-perf
trading software @ Devexperts

* Teach concurrent & distributed
programming @ St. Petersburg
ITMO University

* Chief judge @ Northeastern
European Region of ACM ICPC

* Now work on Kotlin @ JetBrains

Agenda

e Kotlin coroutines overview & motivation for lock-
free algorithms

* Lock-free doubly linked list
* Lock-free multi-word compare-and-swap

 Combining them to get more complex atomic
operations (without STM)

* Kotlin basic facts

* Kotlin is a JVM language developed by JetBrains
* General purpose and statically-typed

* Object-oriented and functional paradigms

* Open source under Apache 2.0

e Reached version 1.0 in 2016

e Compatibility commitment
* Now at version 1.1

 Officially supported by Google on Android

Kotlin is ...

* Modern

* Concise

 Safe

* Extensible

* Pragmatic

* Fun to work with!

Kotlin is pragmatic

... and easy to learn

Coroutines

Asynchronous programming made easy

(>

4

How do we write code that waits for
something most of the time?

Blocking threads

(@] fun postItem(item: Item) {
val token = requestToken()

val post = submitPost(token, item)
processPost(post)

Callbacks

(@] fun postItem(item: Item) {
requestToken { token ->
submitPost(token, item) { post —>
processPost(post)

}

Futures/Promises/Rx

(@] fun postItem(item: Item) {
requestToken()

. thenCompose { token ->
submitPost(token, item)

}

.thenAccept { post —>
processPost(post)

}

Coroutines

(@] fun postItem(item: Item) {
launch(CommonPool) {
val token = requestToken()
val post = submitPost(token, item)
processPost(post)

CSP & Actor models

* A style of programming for modern systems

* Lots of concurrent tasks / jobs
* Waiting most of the time
 Communicating all the time

Share data by communicating

Kotlin coroutines primitives

* Jobs/Deferreds (futures)
* join/await
e Channels

* send & receive
* synchronous & buffered channels

* Select/alternatives
e Atomically wait on multiple events

e Cancellation
e Parent-child hierarchies

Implementation challenges

* Coroutines are like light-weight threads

* All the low-level scheduling & communication
mechanisms have to scale to lots of coroutines

Lock-free algorithms

Building blocks

* Single-word CAS (that’s all we have on JVM)
* Automatic memory management (GC)

* Practical lock-free algorithms

* Lock-Free and Practical Doubly Linked List-Based
Deques Using Single-Word Compare-and-Swap
by Sundell and Tsigas

* A Practical Multi-Word Compare-and-Swap Operation
by Timothy L. Harris, Keir Fraser and lan A. Pratt.

Doubly linked list

next links form logical list contents
prev links are auxiliary

sentinel sentinel
\ J

f
Use same node in practice

Insert

PushRight (like in queue)

Doubly linked list (insert O)

create & init

Doubly linked list (insert 1)

gl o

Retry insert on CAS
failure

Doubly linked list (insert 2)

"finish insert”

B0

lgnore CAS failure

Remove

PopLeft (like in queue)

Doubly linked list (remove 1)

Mark removed node’s
next link

=N BN oo

Retry remove on CAS failure

Use wrapper object for mark in practice
Don 't use AtomicMarkableReference

Cache wrappers in pointed-to nodes

Doubly linked list (remove 2)

"finish remove”
Mark removed node’s
prev link

CAS

Retry marking on CAS failure

Doubly linked list (remove 3)

"help remove” — fixup next links

CAS | E

Doubly linked list (remove 4)

“correct prev” — fixup prev links

o BE Bl

CAS

State transitions

Node states

(

correct prev
\

\

3
Init Insert 1 Insert 2
next: Ok next: Ok next: Ok
prev: Ok prev: Ok prev: Ok
prev.next: -- prev.next: me prev.next: me
next.prev: -- next.prev: -- next.prev: me

Remove 4

next: Rem

prev: Rem
prev.next: ++
next.prev: ++

Remove 3

next: Rem

prev: Rem
prev.next: ++
next.prev: me

Remove 2

next: Rem

prev: Rem
prev.next: me
next.prev: me

Remove 1

next: Rem

prev: Ok
prev.next: me
next.prev: me

J \

|
help remove

|
correct prev

Helping

Concurrent insert

Concurrent insert (0O)

Concurrent insert (1)

CAS fail

Concurrent insert (2)

detect wrong prev
(t.prev.next !=t)

Concurrent insert (3)

correct prev

Concurrent insert (4)

reinit & repeat

Concurrent remove

Concurrent remove (0)

R1

R2

Concurrent remove (1)

Concurrent remove (2)

Finds already removed

Concurrent remove (3)

help remove

mark prev

Concurrent remove (4)

Retry with corrected next

Concurrent remove (5)

help remove

Concurrent remove (6)

correct prev

Concurrent remove &
Insert

When remove wins

Concurrent remove & insert (O)

create & init

Concurrent remove & insert (1)

Concurrent remove & insert (2)

Concurrent remove & insert (3)

detect wrong prev
(t.prev.next -- removed)
do “correct prev”

Concurrent remove & insert (4)

=

fixup next

mark prev

Concurrent remove & insert (5)

update prev

Concurrent remove & insert (6)

H reinit & repeat
é \4

Concurrent remove &
Insert

When insert wins

Concurrent remove & insert (0)

create & init

Concurrent remove & insert (1)

Concurrent remove & insert (2)

will succeed marking on remove retry

Concurrent remove & insert (3)

help remove

mark prev

Concurrent remove & insert (4)

correct prev

-

Remove is over!

Concurrent remove & insert (5)

AE

-

correct prev

Takeaways

* A kind of algo you need a paper for
* Hard to improve w/o writing another paper
* Good news: stress tests uncover most impl bugs

* Bad news: when stress test fails, you up to long
hours

* More bad news: hard to find bugs that violate lock-
freedomness of algorithm

Summary: what we can do

* Insert items (at the end of the queue)
 Remove items (at the front of the queue)
* Traverse the list

 Remove items at arbitrary locations
* In O(1)

Linearizability

e Insert last
e Linearizes at CAS of next

* Remove first / arbitrary
e Success — at CAS of next
* Fail — at read of head.next

More about algorithm

e Sundell & Tsigas algo supports deque operations
e Can PushlLeft & PopRight

* Popleft is simple — read head.next & remove

* But cannot linearize them all at cas points
* PushLeft, PushRight, PopRight - Ok
* PoplLeft linearizes at head.next read (!!!)

Summary of impl notes

e Use GC (drop all memory management details)

* Merge head & tail into a single sentinel node
* Empty list is just one object (prev & next onto itself)
* One item += one object

* Reuse “remove mark” objects
* One-element lists reuse of ptrs to sentinel all the time

* Encapsulate!

Mods

More complex atomic operations

Basic mods (1)

* Insert item conditionally on prev tail value

ut before CAS

Basic mods (2)

 Remove head conditionally on prev head value

check & bailout before CAS

Practical use-case: synchronous
channels

(:) val channel = Channel<Int>()

// coroutine #1

<:> for (x in 1..5) {

channel.send(x * Xx)
}

// coroutine #2
repeat(5) {

println(channel. receive())
5

Senders wait

More
senders

Incoming
receivers

m-» Sender #1 Sender #2

Receiver removes Sender inserts last if it
first if it is a sender is not a receiver node
node

Recelvers wait

More
receivers

Incoming
senders

m-» Receiver #1 Receiver #2

Sender removes Receiver inserts last if
first if it is a receiver it is not a sender node
node

Send function sketch

fun send(element: T) {
while (true) {
// try to add sender, unless prev 1s receiver
0 if (enqueueSend(element)) break
// try to remove first receiver
e val receiver = removeFirstReceiver()

if (receiver != null) {
e receiver.resume(element) // resume receiver
break
}

Channel use-case recap

* Uses insert/remove ops conditional on tail/head
node

* Can abort (cancel) wait to receive/send at any time
by using remove
* Full removal -- no garbage is left

* Pretty efficient in practice
* One item lists — one “garbage” object

Multi-word compare and
swap (CASN)

Build even bigger atomic operations

Use-case: select expression

Channel<Int>()
Channel<Int>()

val channell
val channel2

select {
channell.onReceive { e => ... }
channel2.onReceive { e => ... }

Impl summary: register (1)

Select 1. Not selected
status: NS 2. Selected

Channell
Queue

Channel2
Queue

Impl summary: register (2)

Select Add node to channell queue if

status: NS not selected (NS) yet

Channell
Queue

Channel2
Queue

Impl summary: register (3)

Select
status: NS

Add node to channel2 queue if
not selected (NS) yet

Channel2
Queue

Channell
Queue

Impl summary: wait

Select
status: NS

Channell Channel2
Queue Queue

Impl summary: select (resume)

|
Select Make selected and remove node
status: S from queue

Channel2

Channell

Queue Queue

Impl summary: clean up rest

Select Remove non-selected waiters
status: S from queue

Channell
Queue

Channel2
Queue

Double-Compare
Single-Swap (DCSS)

Building block for CASN

DCSS spec in pseudo-code

fun <A,B> dcss(

a: Ref<A>, expectA: A, updateA: A,
b: Ref, expectB: B) =
atomic {
e if (a.value == expectA && b.value == expectB) {
a.value = updateA
s

DCSS: init descriptor

expectA expectB

DCSS Descriptor
(a, expectA, updateA,
b, expectB)

DCSS: prepare

“
CAS ptr to descriptor if a.value == expectA

DCSS Descriptor

(a, expectA, updateA,
b, expectB)

DCSS: read b.value

“
CAS ptr to descriptor if a.value == expectA

DCSS Descriptor

(a, expectA, updateA,
b, expectB)

DCSS: complete (when success)

expectB

CAS to updated value if a still points to descriptor
updateA

DCSS Descriptor

(a, expectA, updateA,
b, expectB)

DCSS: complete (alternative)

“

DCSS Descriptor
(a, expectA, updateA,
b, expectB)

DCSS: complete (when fail)

lexpectB

expectA

CAS to original value if a still points to descriptor
updateA

DCSS Descriptor

(a, expectA, updateA,
b, expectB)

Any other thread encountering
descriptor helps complete

DCSS: States

Init
A: ???

(desc created)

prep ok A: desc success A: updateA
A was expectA B was expectB

prep fail
A: ??? A: expectA Originator cannot
A was lexpectA B was lexpectB learn what was the
outcome

Y

one tread Lock-free algorithm without loops!

Caveats

* A & B locations must be totally ordered
* or risk stack-overflow while helping

* One way to look at it: Restricted DCSS (RDCSS)

DCSS Mod: learn outcome

fun <A,B> dcssMod (

a: Ref<A>, expectA: A, updateA: A,
b: Ref, expectB: B): Boolean =
atomic {
if (a.value == expectA && b.value == expectB) {
a.value = updateA
true
} else
false

DCSS Mod: init descriptor

expectA

expectB

DCSS Descriptor
(a, expectA, updateA,
b, expectB)

Outcome: UNDECIDED

Consensus

DCSS Mod: prepare

“

expectB

DCSS Descriptor

(a, expectA, updateA,
b, expectB)

Outcome: UNDECIDED

DCSS Mod: read b.value

“

DCSS Descriptor

(a, expectA, updateA,
b, expectB)

Outcome: UNDECIDED

DCSS Mod: reach consensus

“

DCSS Descriptor

(a, expectA, updateA,
b, expectB)

Outcome: SUCCESS

CAS(UNDECIDED,
DECISION)

DCSS Mod: complete

expectB

DCSS Descriptor
(a, expectA, updateA,

b, expectB)

Outcome: SUCCESS

DCSS Mod: States

o Init

A: ??? prep ok
Outcome: UND
(desc created)

A: desc
Outcome: SUCC
B was expectB

A: desc
Outcome: UND
A was expectA

SuUccess

prep fail

A: updateA

7
A: expectA

A: ???
Outcome: FAIL
A was lexpectA

A: desc
Outcome: FAIL

f

one tread Still no loops!

Compare-And-Swap
N-words (CASN)

The ultimate atomic update

CASN spec in pseudo-code

For two words, for simplicity

fun <A,B> cas2(

a: Ref<A>, expectA: A, updateA: A,
b: Ref, expectB: B, updateB: B): Boolean =
atomic {
e if (a.value == expectA && b.value == expectB) {
a.value = updateA
e b.value = updateB
true
} else

e false

}

CASN: init descriptor

DCSS Descriptor

expectA

(a, expectA, updateA,
b, expectB, updateB)

Outcome: UNDECIDED

CASN: prepare (1)

“

DCSS Descriptor
(a, expectA, updateA,

expectB

b, expectB, updateB)

Outcome: UNDECIDED

CASN: prepare (2)

DCSS Descriptor

(a, expectA, updateA,
b, expectB, updateB)

Outcome: UNDECIDED

expectB

updateB

Use DCSS to update B if
Outcome == UNDECIDED

CASN: decide

““

DCSS Descriptor

(a, expectA, updateA,
b, expectB, updateB)

CAS outcome
Outcome: SUCCESS

CASN: complete (1

“
CAS

DCSS Descriptor
(a, expectA, updateA,

b, expectB, updateB)

Outcome: SUCCESS

CASN: complete (2

#
:

DCSS Descriptor

(a, expectA, updateA,

updateB

b, expectB, updateB)

Outcome: SUCCESS

CASN: States
O,

A: ??7?
B: ???
O: UND

A = expectA B = expectB Prevents from

going back in this SM
A: ?7?7?
B: ???
O: FAIL
A: expectA
\ J B: ???
Y 0: FAIL
one tread

A: updateA
B: desc
O: SUCC

Init
A: updateA
B: updateB
O: SUCC

|

descriptor is known to other (helping) threads

Using It In practice

All the little things that matter

It is easy to combine multiple operations
with DCSS/CASN that linearize on a CAS
with a descriptor parameters that are
known in advance

Trivial example: Treiber stack

S » 3 New node

Let’s go deeper

Into unpublished territory

Doubly linked list:
insert last

Doubly linked list: insert (0)

' |
Operation Descriptor DCSS here is needed (always!)

A ref: ??7? ??? can fill in A before CAS & update on retry
expectA: Sentinel We know expected value for CAS in advance
updateA: Node #2 We know updated value for CAS in advance

Outcome: UNDECIDED

Doubly linked list: insert (1)

Operation Descriptor DCSS Descriptor

affected node: #1
operation ref

A ref: ?7?7?
expectA: Sentinel
updateA: Node #2

Outcome: UNDECIDED

Doubly linked list: insert (2)

Helpers are a bound to stumble
upon the same descriptor

Competing inserts will
complete (help) us first

CAS can only succeed on last node

Operation Descriptor DCSS Descriptor

affected node: #1
operation ref

A ref: ?7?7?
expectA: Sentinel
updateA: Node #2

Outcome: UNDECIDED

Doubly linked list: insert (3)

desc is updated after successful DCSS

Operation Descriptor DCSS Descriptor

affected node: #1
operation ref

A ref: Node #1
expectA: Sentinel
updateA: Node #2

Outcome: UNDECIDED

Doubly linked list: insert (4)

Stays pointed until operation
Operation Descriptor outcome is decided

A ref: Node #1
expectA: Sentinel
updateA: Node #2

Outcome: UNDECIDED

Doubly linked list:
remove first

Doubly linked list: remove (0)

CAS here

N D
%

Operation Descriptor

A ref: ?7?7?
expectA: ??7? Both not known in advance

updateA: Rem[??7?] Deterministic f(expectA)

Outcome: UNDECIDED

Doubly linked list: remove (1)

Operation Descriptor DCSS Descriptor

affected node: #1
old value: #2

operation ref

A ref: ??7?
expectA: ?7??
updateA: Rem[??7?]

Outcome: UNDECIDED

Doubly linked list: remove (2)

Cannot change w/o removal of #1 It locks what node we are to remove
We don’t support PushLeft!!!

Operation Descriptor DCSS Descriptor

affected node: #1
old value: #2

operation ref

A ref: ??7?
expectA: ?7??
updateA: Rem[??7?]

Outcome: UNDECIDED

Doubly linked list: remove (3)

desc is updated after successful DCSS

Operation Descriptor DCSS Descriptor

affected node: #1
old value: #2

operation ref

A ref: Node #1
expectA: Node #2
updateA: Rem[#2]

Outcome: UNDECIDED

Doubly linked list: remove (4)

BN Ele

Stays pointed until operation
Operation Descriptor outcome is decided

A ref: Node #1
expectA: Node #2
updateA: Rem[#2]

Outcome: UNDECIDED

Closing notes

* All we care about is CAS that linearizes operation

e Subsequent updates are helper moves
* Invoke regular help/correct functions

* Perfect algorithm to combine with optional
Hardware Transactional Memory (HTM)

References

* Kotlin language
* http://kotlinlang.org

* Kotlin coroutines support library
e http://github.com/kotlin/kotlinx.coroutines

Thank you

Any questions?

email me to elizarov at gmail
Y relizarov

