

Implementa*on techniques for
libraries of transac*onal concurrent

data types

Liuba Shrira

Brandeis University

Or: Type-Specific Concurrency Control and STM

Where Modern STMs Fail

3	

I’d like a unique ID please

2011

Me too

2012

Non-transactional case

Where Modern STMs Fail

4	

I’d like a unique ID please

2011

Me too

transactional case

Write
conflict!

OMG!

It’s not the STMs problem really

5	

Unique ID generator

Successive integers
Unique IDs

Concurrent ops
conflict

Concurrent ops
commute

Relaxed Atomicity

WTTM	2012	 6-juil-17	

Early release, open-nested,
Eventual, elastic,
²-serializability, etc.

Popular in 80s & 90s …
DB and distributed

Mostly forgotten …

Except for snapshot isolation.

Exploit

Type-Specific Concurrency Control

7	

Also from 80s …

Commutativity …
Non-determinism

For example
Escrow …

Exo-leasing …

TM raises different
questions

8	

Heart of the Problem

Confusion between thread-level and
transaction-level synchronization.

Needless entanglement kills concurrency

Relaxed consistency models are all
about more entanglement

9	

Heart of the Problem

Confusion between thread-level and
transaction-level synchronization.

Needless entanglement kills concurrency

Relaxed consistency models are all
about more entanglement

Short-lived, fine-grained

10	

50 Shades of Synchroniza*on

Atomic instruction (CAS)
Hardware Transaction Critical Sections

Long-lived, coarse-grained
Software transaction

2

Transac*onal Boos*ng

11	

Method for transforming…..
linearizable

highly concurrent

Into …
highly concurrent

black-box
objects

transactional
objects

12	

Concurrent Objects

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

13	

Linearizability

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y) q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

14	

Linearizable Objects

threads

Thread-level
synchronization

Linearizable object

15	

Transac*onal Boos*ng

transactions

Transaction-level
synchronization

Thread-level
synchronization

16	

Disentangled Run-Time

Library:
abstract locks,
Inverse logs

Your favorite
fine-grained
algorithms

HW transactions

17	

Disentangled Reasoning

Commutativity &
inverses

Linearizability
e.g., rely-guarantee …

One Implementa*on

transactions
Abstract locks Black-box linearizable

data object

rem(x)

Undo Logs

add(x)

x

Lets look at some code

•  Example	1:	Transac?onal	Set			
•  implemented	by	boos?ng	ConcurrentSkipList	object,	using	LockKey	for	synchroniza?on	

More examples:

•  	Transac?onal	Priority	Queue,	Pipelining,		UniqueID		…	
•  implemented	by	boos?ng	concurrent	objects	from	Java	concurrency	packages	

Performance of boos*ng

What’s the Catch?

24	

Concurrent calls must commute
Different orders yield same state, values

(Actually, all about left/right movers)

Methods must have inverses
Immediately after, restores state

What’s the Catch?

25	

Concurrent calls must commute
Different orders yield same state, values

(Actually, all about left/right movers)

Methods must have inverses
Immediately after, restores state

Boos*ng

• Reuse	code,	improve	performance	
• But	inverses	

And is there ever enough performance?

How to improve performance?

Recall, we want

• Good	performance	when	synchroniza?on	is	required	
•  Scalability	

•  E.g.,	for	in-memory	key-value	store	

Up next: how to improve the performance of
a transac*onal data structure?

• MassTree:	a	high	performance	data	structure	
•  Silo:	high	performance	transac?ons	over		MassTree	using	a	different		
approach	

•  STO:		a	general	framework	and	methodology	for	building	libraries	of	
customized	high	performance	transac?onal	objects	

MassTree

• High-performance	key/value	store	
•  In	shared	primary	memory	
•  Cores	run	put,	get,	and	delete	requests	

Review: Memory Model

•  Each	core	has	a	cache	
• Hiang	in	the	cache	mabers	a	lot	for	reads!	
• What	about	a	write?	

•  TSO	(Total	Store	Order)	

•  Thread	t1	modifies	x	and	later	y	
•  Thread	t2	sees	modifica?on	to	y	
•  t2	reads	x	

•  Implies	t2	sees	modifica?on	of	x	

X86-TSO

MassTree structure

• Nodes	and	records	
• Nodes	

•  Cover	a	range	of	keys	
•  Interior	and	leaf	nodes	

• Records	
•  Store	the	values	

Concurrency Control

• Reader/writer	locks?	

Thread-level Concurrency Control

• Base	instruc?ons	
•  Compare	and	swap	

•  On	one	memory	word	
•  Fence		

Concurrency Control for mul*-word

•  First	word	of	nodes	and	records		
•  version	number	(v#)	and	lock	bit	

Concurrency control

• Write	
•  Set	lock	bit	(spin	if	necessary)	

•  uses	compare	and	swap	
•  Update	node	or	record	
•  Increment	v#	and	release	lock	

Concurrency control

• Write	(locking)	
• Read	(no	locking)	

•  Spin	if	locked	
•  Read	contents	
•  If	v#	has	changed	or	lock	is	set,	try	again	

Concurrency control

• Writes	are	pessimis?c	
• Reads	are	op?mis?c	

• A	mix!	
• No	writes	for	reads	

Inser*ng new keys

•  Into	leaf	node	if	possible	
•  Else	split	

Inser*ng new keys

•  Into	leaf	node	if	possible	
•  Else	split	

•  Split	locks	nodes	up	the	path	
•  No	deadlocks	

Interes*ng Issue with spliYng

From MassTree to Silo

• High-performance	database	
• With	transac?ons	

Silo

• Database	is	in	primary	memory		
• Runs	one-shot	requests	

Silo

• Database	is	in	primary	memory		
• Runs	one-shot	requests	

• A	tree	for	each	table	or	index	
• Worker	threads	run	the	requests	

•  One	thread	per	core	
• Workers	share	memory	

Transac*ons

	begin	{	
		%	do	stuff:	run	queries	
		%	using	insert,	lookup,	update,	delete,	
		%	and	range	
	}	

Running Transac*ons

• MassTree	opera?ons	release	locks	before	returning	
•  Hold	locks	longer?	

Running Transac*ons

• OCC	(Op?mis?c	Concurrency	Control)	
•  Thread	maintains	read-set	and	write-set	

•  Read-set	contains	version	numbers	
•  Write-set	contains	new	state	

• At	end,	abempts	commit	

Commit Protocol

• Phase	1:	lock	all	objects	in	write-set	
•  Bounded	spinning	

Commit Protocol

• Phase	1:	lock	all	objects	in	write-set	
• Phase	2:	verify	v#’s	of	read-set	

•  Abort	if	locked	or	changed	

Commit Protocol

• Phase	1:	lock	all	objects	in	write-set	
• Phase	2:	verify	v#’s	of	read-set	
•  Select	Tid	(>v#	of	r-	and	w-sets)	

• Without	a	write	to	shared	state!	

Commit Protocol

• Phase	1:	lock	all	objects	in	write-set	
• Phase	2:	verify	v#’s	of	read-set	
•  Select	Tid	(>v#	of	r-	and	w-sets)	
• Phase	3:	update	objects	in	write-set	

•  Using	Tid	as	v#	

Commit Protocol

• Phase	1:	lock	all	objects	in	write-set	
• Phase	2:	verify	v#’s	of	read-set	
•  Select	Tid	(>v#	of	r-	and	w-sets)	
• Phase	3:	update	objects	in	write-set	
• Release	locks	

Addi*onal Issues

• Range	queries	
• Absent	keys	
• Garbage	collec?on	

Performance

Performance

•  vs.	Hstore	
•  M.	Stonebraker	et	al,	The	end	of	an	architectural	era:	(it’s	?me	for	a	complete	rewrite),	VLDB	

‘07	

Silo to STO

•  STO	(Sosware	Transac?onal	Objects)	

STO

•  Silo	trees	are	an	highly	concurrent	data	structures	
•  Specifica?on	determines	poten?al	concurrency	
•  Implementa?on	is	hidden	

•  Including	concurrency	control	

A vision for concurrent code

• Apps	run	transac?ons	

A vision for concurrent applica*on code, like
boos*ng

• Apps	run	transac?ons	
• Using	transac?on-aware	datatypes	

•  E.g.,	sets,	maps,	arrays,	boxes,	queues	

Transac*ons

	begin	{	
		%	do	stuff:	run	queries	
		%	using	insert,	lookup,	update,	delete,	
		%	and	range	
	}	

Back to our vision for concurrent code

• Apps	run	transac?ons	
• Using	fast	transac?on-aware	datatypes	

•  Designed	by	experts	
•  Require	sophis?ca?on	to	implement	
•  But	so	are	concurrent	datatypes	in	Java		

STO

•  Think	Silo	broken	into	two	parts:	
•  STO	platorm	
•  Transac?on-aware	datatypes	

STO PlaZorm

• Runs	transac?ons	
•  Transac?on	{	…	}	

• Provides	transac?on	state	
•  Read-	and	write-sets	

• Runs	commit	protocol	using	callbacks	

Transac*on-aware datatypes

• Provide	ops	for	user	code	
•  E.g.,	lookup,	update,	insert,	delete,	range	

• Record	reads	and	writes	via	platorm	
• Provide	callbacks	

•  lock,	unlock,	check,	install,	cleanup	

Transac*on-aware datatypes

• Provide	ops	for	user	code	
• Record	reads	and	writes	via	platorm	
• Provide	callbacks	

•  lock,	unlock,	check,	install,	cleanup	
•  cleanup	for	abort,	aser-commit	
•  E.g.,	dele?ng	a	key	

Transac*on-aware types

• Maps	
• Hash	tables	
• Counters		

•  void	incr()	vs.	int	incr()	
•  Uses	check	and	install	

Designing fast STO’s data types:

•  Specifica?on	
•  Some	common	tricks	

•  Inserted	elements:	direct	updates	
•  Absent	elements:	extra	version	numbers	
•  Read-my-writes:	adjustments	

• Correctness	

Specifica*on

Inserted elements and repeated lookup

• Hybrid	strategy	
•  T1:	insert	“poisoned”	element	
•  T2:	abort	on	observing	a	“poisoned”	element	
•  T1:		no	need	to	validate	inser?on	at	commit	

Absent elements

•  T1:			get(K)	:	K	is	absent	
•  How	to	validate	at	commit?	

•  Extra	version	numbers	
•  For	hash	table:	on	bucket	of	absent	key	
•  BTree	:	on	parent	node	of	absent	key	

Read-my-writes

•  T1:	scan	a	range	A..Z;	insert	a	key	C		
•  how	to	validate	range	?	

Correctness

• Version	numbers	on	all	shared	state	
•  Exclusive	locks	
• Check	must	fail	if	segment	locked	or	version	number	changed	
• Modifica?ons	invisible	to	other	transac?ons	before	install	

Performance

Implementa*on

•  Silo:	7000	lines	of	code	
•  STO-Silo:	3000	lines	of	code	

•  Uses	hash	tables	and	trees	

Performance

•  vs.	TL2	(grey)	
• And	boos?ng	(lilac)	

Op*mism vs Pessimism?

									Effects	of	pessimism	and	boos?ng	on	a	hash	table	micro	benchmark.		
	
									Numbers	are	speedup	at	16	threads	rela?ve	to	single-threaded	STO	

More examples of powerful op*miza*ons

STO: last word for exploi*ng ADT in TM?

• Needs	more	work	
•  More	datatypes	
•  Methodology	
•  Programming	language	integra?on	
•  Distribu?on		

Summary:
Implemen*ng a Library of Transac*onal Data types:

•  Dis?nc?on	between	short	Thread	level	vs	coarse	grain	Transac?on-level	
coordina?on	is	key	

•  Can	re-use	data	structure	code	or	co-design	and	customize:	

•  Boos?ng:	a	black	box	approach,	first	ADT/STM	(code	re-use,	restric?ons)	

•  STO:	high-performance		pessimis?c/op?mis?c	approach	(co-design	and	customize)	

•  																																														(Thanks	to	M.Herlihy	and	B.	Liskov	for	help	with	slides!)	

 Ques*ons

