
Algorithms for Optimization of Remote Core
Locking Synchronization in Hierarchical

Multicore Computer Systems

Alexey Paznikov
Saint Petersburg Electrotechnical University “LETI”

apaznikov@gmail.com

Abstract. This paper proposes the algorithms for optimization of Re-
mote Core Locking (RCL) synchronization method in multithreaded pro-
grams. The algorithm of initialization of RCL-locks and the algorithms
for threads affinity optimization are developed. The algorithms consider
the structures of hierarchical computer systems and non-uniform mem-
ory access (NUMA) to minimize execution time of RCL-programs.

Keywords: remote core locking, RCL, synchronization, critical sections,
scalability

Full paper: https://www.dropbox.com/s/rp89f60hozdoljt/paznikov-rcl.
pdf?dl=0

This paper considers Remote Core Locking (RCL) synchronization in multi-
threaded programs, which assumes execution of critical section on the dedicated
processor cores. The current implementation of RCL has several drawbacks.
There are no memory affinity in NUMA systems. RCL also has no mechanism
of automatic selection of processor cores for server thread and working threads.

For the memory affinity optimization and RCL-server processor affinity opti-
mization we propose the algorithm RCLLockInitNUMA of initialization of RCL-
lock. On the first stage we compute the number of processor cores which is not
busy by the RCL-server and the number of processor cores used on each of
NUMA-node. The second stage of the algorithm includes the search of sub-
optimal processor core and the affinity of RCL-server to it. The algorithms is
finished by call of function of RCL-lock initialization with selected affinity.

For the optimization of working thread affinity we propose the heuristic al-
gorithm RCLHierarchicalAffinity. The algorithm takes into account hierarchical
structure of multi-core CS to minimize the execution time of multithreaded pro-
grams with RCL. That algorithm is executed each time when parallel thread is
created.

The figure 1 depicts the throughput b of critical section with number p of
threads. The algorithm RCLLockInitNUMA minimizes by 10−20% the through-
put of critical section at random access to the elements of test array and at



2 Alexey Paznikov

strided access. The figures 2 represent the experimental results of different affini-
ties for the benchmark. The algorithm RCLHierarchicalAffinity significantly in-
creases critical section throughput.

a b

Fig. 1: Efficiency of the algorithms of RCL-lock initalization. a – p = 2, . . . , 7,
b – p = 2, . . . , 100 1 – RCLLockInitNUMA, sequential access, 2 – RCLLock-
InitDefault, sequential access, 3 – RCLLockInitNUMA, strided access, 4 –
RCLLockInitDefault, strided access, 5 – RCLLockInitNUMA, random access,
6 – RCLLockInitDefault, random access

a b

Fig. 2: Threads affinity efficiency comparison. a – p = 2, b – p = 3, c – p = 4,
d – p = 5 – RCLLockInitDefault, random access, – RCLLockInitDe-
fault, sequential access, – RCLLockInitDefault, strided access, – RCLLock-
InitNUMA, random access, – RCLLockInitNUMA, sequential access, –
RCLLockInitNUMA, strided access. – working thread, – RCL-server,
– thread allocating the memory.



Algorithms for Optimization of Remote Core Locking 3

The algorithm RCLLockInitNUMA increases by 10 − 20% at the average
the throughput of critical sections on the NUMA systems. The optimization
is reached by means of minimization of number of addresses to remote memory
NUMA-segments. The algorithm RCLHierarchicalAffinity increases the through-
put of critical section up to 1.2−2.4 times for all access templates on some com-
puter systems. The algorithms sets the affinity with considering the hierarchical
levels of multicore computer systems.


