Троичный поиск — различия между версиями
(→Время работы) |
(→Алгоритм) |
||
Строка 8: | Строка 8: | ||
Пусть функция <tex>f(x)</tex> на отрезке <tex>[l, r]</tex> имеет минимум, и мы хотим найти точку <tex>x_{min}</tex>, в которой он достигается. | Пусть функция <tex>f(x)</tex> на отрезке <tex>[l, r]</tex> имеет минимум, и мы хотим найти точку <tex>x_{min}</tex>, в которой он достигается. | ||
− | Посчитаем значения функции в точках <tex> a = l + \frac{(r-l)}{3} </tex> и <tex> b = l + \frac{2(r-l)}{3} </tex>. Так как в точке <tex>x_{min}</tex> минимум, то на отрезке <tex>[l, x_{min}]</tex> функция убывает, а на <tex>[x_{min}, r]</tex> {{---}} возрастает, то есть | + | Посчитаем значения функции в точках <tex> a = l + \frac{(r-l)}{3} </tex> и <tex> b = l + \frac{2(r-l)}{3} </tex>. |
+ | |||
+ | Так как в точке <tex>x_{min}</tex> минимум, то на отрезке <tex>[l, x_{min}]</tex> функция убывает, а на <tex>[x_{min}, r]</tex> {{---}} возрастает, то есть | ||
<tex> \forall x', x'' \in [l, r]: \\ | <tex> \forall x', x'' \in [l, r]: \\ | ||
l < x' < x'' < x_{min} \Rightarrow f(l) > f(x') > f(x'') > f(x_{min}) \\ | l < x' < x'' < x_{min} \Rightarrow f(l) > f(x') > f(x'') > f(x_{min}) \\ |
Версия 16:52, 15 июня 2011
Эта статья находится в разработке!
Троичный поиск (или тернарный поиск) — метод поиска минимума или максимума функции на отрезке.
Алгоритм
Рассмотрим этот алгоритм на примере поиска минимума (поиск максимума аналогичен).
Пусть функция
на отрезке имеет минимум, и мы хотим найти точку , в которой он достигается.Посчитаем значения функции в точках
и .Так как в точке
минимум, то на отрезке функция убывает, а на — возрастает, то есть .Значит если
, то , аналогично из следует . Тогда нам нужно изменить границы поиска и искать дальше, пока не будет достигнута необходимая точность, то есть .Псевдокод
ternarySearchMin(f, l, r, eps) if (r - l < eps) return (left + right) / 2 a = (left * 2 + right) / 3 b = (left + right * 2) / 3 if (f(a) < f(b)) return ternarySearch(f, l, b, eps) else return ternarySearch(f, a, r, eps) end
Возможен и нерекурсивный вариант:
ternarySearchMin(f, l, r, eps) while (r - l < eps) { a = (left * 2 + right) / 3 b = (left + right * 2) / 3 if (f(a) < f(b)) r = b else l = a } return (left + right) / 2 end
Время работы
Так как на каждой итерации мы считаем два значения функции и уменьшаем область поиска в полтора раза, пока
, то время работы алгоритма составит