Алгоритм Фарака-Колтона и Бендера — различия между версиями
Kirelagin (обсуждение | вклад) (Быстрофикс) |
Kirelagin (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера)''' — применяется для решения | + | '''Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера)''' — применяется для решения за <tex>\langle O(N),O(1) \rangle</tex> времени специального случая задачи RMQ (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1. Может быть использован также для [[Сведение задачи LCA к задаче RMQ|решения задачи LCA]]. |
'''Вход:''' последовательность <tex>a_i</tex> длины <tex>N</tex>, соседние элементы которой отличаются на ±1.<br/> | '''Вход:''' последовательность <tex>a_i</tex> длины <tex>N</tex>, соседние элементы которой отличаются на ±1.<br/> | ||
− | '''Выход:''' ответы на онлайн запросы вида | + | '''Выход:''' ответы на онлайн запросы вида «позиция минимума на отрезке <tex>[i:j]</tex>». |
== Алгоритм == | == Алгоритм == | ||
Строка 12: | Строка 12: | ||
На новой последовательности <tex>b_i</tex> построим [[Решение RMQ с помощью разреженной таблицы|разреженную таблицу]]. Теперь для ответа на запрос RMQ<tex>[i:j]</tex>, если <tex>i</tex> и <tex>j</tex> находятся в разных блоках, нам необходимо вычислить следующее: | На новой последовательности <tex>b_i</tex> построим [[Решение RMQ с помощью разреженной таблицы|разреженную таблицу]]. Теперь для ответа на запрос RMQ<tex>[i:j]</tex>, если <tex>i</tex> и <tex>j</tex> находятся в разных блоках, нам необходимо вычислить следующее: | ||
− | # | + | # минимум на отрезке от <tex>i</tex> до конца содержащего <tex>i</tex> блока; |
− | # | + | # минимум по всем блокам, находящимся между блоками, содержащими <tex>i</tex> и <tex>j</tex>; |
− | # | + | # минимум от начала блока, содержащего <tex>j</tex>, до <tex>j</tex>. |
Ответом на запрос будет позиция меньшего из эти трёх элементов. | Ответом на запрос будет позиция меньшего из эти трёх элементов. | ||
Строка 31: | Строка 31: | ||
|id=kindscount | |id=kindscount | ||
|statement=Существует <tex>O(\sqrt N)</tex> различных типов нормализованных блоков. | |statement=Существует <tex>O(\sqrt N)</tex> различных типов нормализованных блоков. | ||
− | |proof=Соседние элементы в блоках | + | |proof=Соседние элементы в блоках отличаются на ±1. Первый элемент в нормализованном блоке всегда равен нулю. Таким образом, каждый нормализованный блок может быть представлен ±1-вектором длины <tex>(\frac{\log_2 N}{2}) - 1</tex>. Таких векторов <tex>2^{(1/2 \cdot \log_2 N) - 1} = O(\sqrt N)</tex>. |
}} | }} | ||
Версия 00:57, 26 июня 2011
Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера) — применяется для решения за решения задачи LCA.
времени специального случая задачи RMQ (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1. Может быть использован также дляВход: последовательность
Выход: ответы на онлайн запросы вида «позиция минимума на отрезке ».
Алгоритм
Данный алгоритм основывается на методе решения задачи RMQ с помощью разреженной таблицы (sparse table, ST) за .
Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность
на блоки длины . Для каждого блока вычислим минимум на нём и определим как позицию минимального элемента в -том блоке.На новой последовательности разреженную таблицу. Теперь для ответа на запрос RMQ , если и находятся в разных блоках, нам необходимо вычислить следующее:
построим- минимум на отрезке от до конца содержащего блока;
- минимум по всем блокам, находящимся между блоками, содержащими и ;
- минимум от начала блока, содержащего , до .
Ответом на запрос будет позиция меньшего из эти трёх элементов.
Второй элемент мы уже умеем находить за
с помощью и ST. Осталось научиться находить минимум по отрезку, границы которого не совпадают с границами блоков.Минимум внутри блока
Утверждение: |
Если две последовательности и таковы, что все их элементы на соответствующих позициях различаются на одну и ту же константу (т.е. ), то любой запрос RMQ даст один и тот же ответ для обеих последовательностей. |
Таким образом, мы можем нормализовать блок, вычтя из всех его элементов первый. Тем самым мы значительно уменьшим число возможных типов блоков.
Утверждение: |
Существует различных типов нормализованных блоков. |
Соседние элементы в блоках отличаются на ±1. Первый элемент в нормализованном блоке всегда равен нулю. Таким образом, каждый нормализованный блок может быть представлен ±1-вектором длины | . Таких векторов .
Осталось создать
таблиц — по одной для каждого типа блока. В такую таблицу необходимо занести предподсчитанные ответы на все возможные запросы минимума внутри блока соответствующего типа, коих . Для каждого блока в необходимо заранее вычислить его тип. Таким образом мы получили возможность отвечать на запрос минимума по любой части блока за , затратив на предподсчёт времени.Результат
Итого, на предподсчёт требуется
времени и памяти, а ответ на запрос вычисляется за .См. также
- Решение RMQ с помощью разреженной таблицы
- Сведение задачи RMQ к задаче LCA
- Сведение задачи LCA к задаче RMQ
Ссылки
- M. A. Bender and M. Farach-Colton. “The LCA Problem Revisited” LATIN, pages 88-94, 2000