Аксиоматизация матроида циклами — различия между версиями
Строка 19: | Строка 19: | ||
В силу нашего предположения <tex>\mathbb I \cup p_i \notin \mathfrak I</tex> для любого <tex>i \in \{1,...,t\}</tex>. Следовательно, существует <tex>\mathbb C_i \in \mathfrak C</tex> такое, что <tex>\mathbb C_i \subseteq \mathbb I \cup p_i</tex> и в силу <tex>\mathfrak C</tex>-независимости множества <tex>\mathbb I</tex> имеем <tex>p_i \in \mathbb C_i</tex> для любого <tex>i \in \{1,...,t\}</tex>. Ясно, что множества <tex>\mathbb C_1,...,\mathbb C_t</tex> попарно различны. | В силу нашего предположения <tex>\mathbb I \cup p_i \notin \mathfrak I</tex> для любого <tex>i \in \{1,...,t\}</tex>. Следовательно, существует <tex>\mathbb C_i \in \mathfrak C</tex> такое, что <tex>\mathbb C_i \subseteq \mathbb I \cup p_i</tex> и в силу <tex>\mathfrak C</tex>-независимости множества <tex>\mathbb I</tex> имеем <tex>p_i \in \mathbb C_i</tex> для любого <tex>i \in \{1,...,t\}</tex>. Ясно, что множества <tex>\mathbb C_1,...,\mathbb C_t</tex> попарно различны. | ||
− | Рассмотрим множество <tex>\mathbb C_1</tex> | + | Рассмотрим множество <tex>\mathbb C_1.</tex> Для него верно <tex>p_1 \in \mathbb C_1 \subseteq \mathbb I \cup p_1.</tex> В силу <tex>\mathfrak C</tex>-независимости <tex>\mathbb J</tex> существует <tex>q_1 \in \mathbb I \setminus \mathbb J</tex> такой, что <tex>q_1 \in \mathbb C_1.</tex> Рассмотрим теперь множество <tex>(\mathbb I \setminus q_1) \cup p_1.</tex> |
− | Если <tex>(\mathbb I \setminus q_1) \cup p_1 \notin \mathfrak I</tex>, то существует <tex>\mathbb C' \in \mathfrak C</tex>, для которого существует | + | Если <tex>(\mathbb I \setminus q_1) \cup p_1 \notin \mathfrak I</tex>, то существует <tex>\mathbb C' \in \mathfrak C</tex>, для которого существует такое <tex>\mathbb C'' \in \mathfrak C,</tex> что <tex>\mathbb C'' \subseteq (\mathbb C_1 \cup \mathbb C_2) \setminus p_1 \subseteq \mathbb I.</tex> Пришли к противоречию с условием <tex>\mathbb I \in \mathfrak I.</tex> |
− | Пусть <tex>(\mathbb I \setminus q_1) \cup p_1 \in \mathfrak I</tex>. Заметим, что <tex>|((\mathbb I \setminus q_1) \cup p_1) \cup \mathbb J| < |\mathbb I \cup \mathbb J|</tex>. Поэтому в силу выбора пары <tex>\mathbb I, \mathbb J</tex> для пары <tex>(\mathbb I \setminus q_1) \cup p_1, J</tex> существует элемент <tex>p_j</tex>, где <tex>j \ge 2</tex>, такой, что <tex>(\mathbb I \setminus q_1) \cup p_1 \cup p_j \in \mathfrak I</tex>. Возьмем множество <tex>\mathbb C_j \in \mathfrak C</tex>. Для него выполняется <tex>p_j \in \mathbb C_j \subseteq \mathbb I \cup p_j</tex> | + | Пусть <tex>(\mathbb I \setminus q_1) \cup p_1 \in \mathfrak I</tex>. Заметим, что <tex>|((\mathbb I \setminus q_1) \cup p_1) \cup \mathbb J| < |\mathbb I \cup \mathbb J|</tex>. Поэтому в силу выбора пары <tex>\mathbb I, \mathbb J</tex> для пары <tex>(\mathbb I \setminus q_1) \cup p_1, J</tex> существует элемент <tex>p_j</tex>, где <tex>j \ge 2</tex>, такой, что <tex>(\mathbb I \setminus q_1) \cup p_1 \cup p_j \in \mathfrak I</tex>. Возьмем множество <tex>\mathbb C_j \in \mathfrak C</tex>. Для него выполняется <tex>p_j \in \mathbb C_j \subseteq \mathbb I \cup p_j.</tex> Если <tex>q_1 \notin \mathbb C_j</tex>, то <tex>\mathbb C_j \subseteq (\mathbb I \setminus q_1) \cup p_j \subseteq (\mathbb I \setminus q1) \cup p_1 \cup p_j</tex>, что невозможно. Следовательно, <tex>q_1 \in \mathbb C_j \cap C_1</tex> и <tex>\mathbb C_j \ne \mathbb C_1</tex>. Тогда по 3 пункуту теоремы, существует <tex>\mathbb C \in \mathfrak C</tex>, для которого <tex>\mathbb C \subseteq (\mathbb C_j \cup \mathbb C_1) \setminus q_1 \subseteq (\mathbb C_j \setminus q_1) \cup (\mathbb C_1 \setminus q_1) \subseteq ((\mathbb I \setminus q_1) \cup p_j) \cup ((\mathbb I \setminus q_1) \cup p_1)</tex>, которое равно <tex>(\mathbb I \setminus q_10) \cup p_1 \cup p_j \in \mathfrak I</tex>, что невозможно. |
− | Итак, семейство <tex>\mathfrak I</tex> удовлетворяет аксиомам матроида. Следовательно, существует матроид <tex>M</tex> на множестве <tex>\mathbb E</tex>, для которого семейство <tex>\mathfrak I</tex> является семейством независимых множеств. Из определения <tex>\mathfrak C</tex>-независимости легко следует, что семейство <tex>\mathfrak C</tex> совпадает с множеством | + | Итак, семейство <tex>\mathfrak I</tex> удовлетворяет аксиомам матроида. Следовательно, существует матроид <tex>M</tex> на множестве <tex>\mathbb E</tex>, для которого семейство <tex>\mathfrak I</tex> является семейством независимых множеств. Из определения <tex>\mathfrak C</tex>-независимости легко следует, что семейство <tex>\mathfrak C</tex> совпадает с множеством циклов матроида <tex>M</tex> |
}} | }} | ||
Версия 18:53, 27 июня 2011
Теорема (Аксиоматизация матроида циклами): |
Пусть — семейство подмножеств конечного непустого множетва такое, что:
|
Доказательство: |
Пусть семейство аксиомам из определения матроида. удовлетворяет условию теоремы. Множество назовем -независимым, если оно не содержит ни одного из множеств . Через обозначим семейство всех -независимых множеств, подмножеств . Проверим, что семейство удовлетворяетПоскольку , имеем , и первая аксиома, очевидно, выполняется.Очевидно, что если и то , и, следовательно, вторая аксиома выполнена.Проверим справедливость третьей аксиомы для семейства . Предположим, что существуют множества такие, что , для которых третья аксиома не выполнена. Среди всех таких пар выберем ту, у которой мощность минимальна. Положим . Если , то, очевидно, и аксиома выполняется. Поэтому достаточно рассмотреть .В силу нашего предположения для любого . Следовательно, существует такое, что и в силу -независимости множества имеем для любого . Ясно, что множества попарно различны.Рассмотрим множество Для него верно В силу -независимости существует такой, что Рассмотрим теперь множествоЕсли , то существует , для которого существует такое что Пришли к противоречию с условиемПусть Итак, семейство . Заметим, что . Поэтому в силу выбора пары для пары существует элемент , где , такой, что . Возьмем множество . Для него выполняется Если , то , что невозможно. Следовательно, и . Тогда по 3 пункуту теоремы, существует , для которого , которое равно , что невозможно. удовлетворяет аксиомам матроида. Следовательно, существует матроид на множестве , для которого семейство является семейством независимых множеств. Из определения -независимости легко следует, что семейство совпадает с множеством циклов матроида |
Литература
Асанов М. О., Баранский В. А., Расин В. В. - Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2