Граф компонент рёберной двусвязности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 9: Строка 9:
 
|proof=
 
|proof=
  
''а)'' <tex>T</tex> - связно. (Следует из определения)
+
''а)'' <tex>T</tex> {{---}} связно. (Следует из определения)
  
 
''б)'' В <tex>T</tex> нет циклов.
 
''б)'' В <tex>T</tex> нет циклов.

Версия 06:05, 24 сентября 2011

Определение:
Пусть граф [math]G[/math] связен. Обозначим [math]A_1...A_n[/math] - компоненты реберной двусвязности, а [math]a_1...a_m[/math] - мосты [math]G[/math]. Построим граф [math]T[/math], в котором вершинами будут [math]A_1...A_n[/math], а ребрами [math]a_1...a_m[/math], соединяющими соответствующие вершины из соответствующих компонент реберной двусвязности. Полученный граф [math]T[/math] называют графом компонент реберной двусвязности графа [math]G[/math].
Лемма:
В определениях, приведенных выше, [math]T[/math] - дерево.
Доказательство:
[math]\triangleright[/math]

а) [math]T[/math] — связно. (Следует из определения)

б) В [math]T[/math] нет циклов. Пусть какие-то две смежные вершины [math]A_k[/math] и [math]A_l[/math] принадлежат какому-то циклу. Тогда ребро [math](A_k, A_l)[/math] принадлежит этому же циклу.

Следовательно, существуют два реберно-непересекающихся пути между вершинами [math]A_k[/math] и [math]A_l[/math], т.е. [math](A_k, A_l)[/math] - не является мостом. Но [math](A_k, A_l)[/math] - мост по условию. Получили противоречие.

[math]T[/math] - дерево.
[math]\triangleleft[/math]

См. также

Граф блоков-точек сочленения