Граф компонент рёберной двусвязности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Пусть [[Основные определения теории графов|граф]] <tex>G</tex> связен. Обозначим <tex>A_1...A_n</tex> - компоненты реберной двусвязности, а <tex>a_1...a_m</tex> - [[Мост, эквивалентные определения|мосты]] <tex>G</tex>.
+
Пусть [[Основные определения теории графов|граф]] <tex>G</tex> связен. Обозначим <tex>A_1...A_n</tex> - компоненты реберной двусвязности, а <tex>a_1...a_m</tex> {{---}} [[Мост, эквивалентные определения|мосты]] <tex>G</tex>.
Построим граф <tex>T</tex>, в котором вершинами будут <tex>A_1...A_n</tex>, а ребрами <tex>a_1...a_m</tex>, соединяющими соответствующие вершины из соответствующих компонент реберной двусвязности. Полученный граф <tex>T</tex> называют '''графом компонент [[Отношение реберной двусвязности|реберной двусвязности]]''' графа <tex>G</tex>.
+
Построим граф <tex>T</tex>, в котором вершинами будут <tex>A_1...A_n</tex>, а ребрами {{---}} <tex>a_1...a_m</tex>, соединяющими соответствующие вершины из соответствующих компонент реберной двусвязности. Полученный граф <tex>T</tex> называют '''графом компонент [[Отношение реберной двусвязности|реберной двусвязности]]''' графа <tex>G</tex>.
 
}}
 
}}
 
{{Лемма
 
{{Лемма
 
|statement=
 
|statement=
В определениях, приведенных выше, <tex>T</tex> - [[Дерево, эквивалентные определения|дерево]].
+
В определениях, приведенных выше, <tex>T</tex> {{---}} [[Дерево, эквивалентные определения|дерево]].
 
|proof=
 
|proof=
  
Строка 14: Строка 14:
 
Пусть какие-то две смежные вершины <tex>A_k</tex> и <tex>A_l</tex> принадлежат какому-то циклу. Тогда ребро <tex>(A_k,  A_l)</tex> принадлежит этому же циклу.
 
Пусть какие-то две смежные вершины <tex>A_k</tex> и <tex>A_l</tex> принадлежат какому-то циклу. Тогда ребро <tex>(A_k,  A_l)</tex> принадлежит этому же циклу.
  
Следовательно, существуют два реберно-непересекающихся пути между вершинами <tex>A_k</tex>  и <tex>A_l</tex>, т.е. <tex>(A_k, A_l)</tex> - не является мостом. Но <tex>(A_k, A_l)</tex> - мост по условию. Получили противоречие.
+
Следовательно, существуют два реберно-непересекающихся пути между вершинами <tex>A_k</tex>  и <tex>A_l</tex>, т.е. <tex>(A_k, A_l)</tex> {{---}} не является мостом. Но <tex>(A_k, A_l)</tex> {{---}} мост по условию. Получили противоречие.
<tex>T</tex> - дерево.
+
<tex>T</tex> {{---}} дерево.
 
}}
 
}}
 
== См. также ==
 
== См. также ==
 
[[Граф блоков-точек сочленения]]
 
[[Граф блоков-точек сочленения]]

Версия 06:08, 24 сентября 2011

Определение:
Пусть граф [math]G[/math] связен. Обозначим [math]A_1...A_n[/math] - компоненты реберной двусвязности, а [math]a_1...a_m[/math]мосты [math]G[/math]. Построим граф [math]T[/math], в котором вершинами будут [math]A_1...A_n[/math], а ребрами — [math]a_1...a_m[/math], соединяющими соответствующие вершины из соответствующих компонент реберной двусвязности. Полученный граф [math]T[/math] называют графом компонент реберной двусвязности графа [math]G[/math].
Лемма:
В определениях, приведенных выше, [math]T[/math]дерево.
Доказательство:
[math]\triangleright[/math]

а) [math]T[/math] — связно. (Следует из определения)

б) В [math]T[/math] нет циклов. Пусть какие-то две смежные вершины [math]A_k[/math] и [math]A_l[/math] принадлежат какому-то циклу. Тогда ребро [math](A_k, A_l)[/math] принадлежит этому же циклу.

Следовательно, существуют два реберно-непересекающихся пути между вершинами [math]A_k[/math] и [math]A_l[/math], т.е. [math](A_k, A_l)[/math] — не является мостом. Но [math](A_k, A_l)[/math] — мост по условию. Получили противоречие.

[math]T[/math] — дерево.
[math]\triangleleft[/math]

См. также

Граф блоков-точек сочленения