Граф блоков-точек сочленения — различия между версиями
Строка 12: | Строка 12: | ||
Достаточно показать, что в <tex>T</tex> нет циклов. | Достаточно показать, что в <tex>T</tex> нет циклов. | ||
Пусть <tex>A_i, a_k, A_j: a_k \in A_i, A_j</tex> - последовательные вершины <tex>T</tex>, лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая <tex>A_i</tex> и <tex>A_j</tex> и не содержащая <tex>a_k</tex>. По ней можно проложить путь в <tex>G</tex> (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине <tex>a_k</tex>, получив цикл, что противоречит тому, что <tex>a_k</tex> - точка сочленения. | Пусть <tex>A_i, a_k, A_j: a_k \in A_i, A_j</tex> - последовательные вершины <tex>T</tex>, лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая <tex>A_i</tex> и <tex>A_j</tex> и не содержащая <tex>a_k</tex>. По ней можно проложить путь в <tex>G</tex> (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине <tex>a_k</tex>, получив цикл, что противоречит тому, что <tex>a_k</tex> - точка сочленения. | ||
− | Пусть аналогично <tex>a_i, A_k, a_j: a_i, a_j \in A_k</tex> - | + | Пусть аналогично <tex>a_i, A_k, a_j: a_i, a_j \in A_k</tex> - лежащие на цикле последовательные вершины <tex>T</tex>. В этом случае рассуждение такое же, и <tex>a_i</tex> и <tex>a_j</tex> не смогут быть точками сочленения из-за цикла в <tex>G</tex>. |
}} | }} | ||
== См. также == | == См. также == | ||
* [[Граф компонент реберной двусвязности]] | * [[Граф компонент реберной двусвязности]] |
Версия 06:47, 24 сентября 2011
Определение: |
Пусть граф связен. Обозначим - блоки, а - точки сочленения . Построим двудольный граф , поместив и в различные его доли. Если точка сочленения принадлежит блоку, проведем между ними ребро. Полученный граф называют графом блоков-точек сочленения графа . |
Лемма: |
В определении, приведенном выше, - дерево. |
Доказательство: |
Достаточно показать, что в Пусть аналогично нет циклов. Пусть - последовательные вершины , лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая и и не содержащая . По ней можно проложить путь в (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине , получив цикл, что противоречит тому, что - точка сочленения. - лежащие на цикле последовательные вершины . В этом случае рассуждение такое же, и и не смогут быть точками сочленения из-за цикла в . |