Преобразование Барроуза-Уилера — различия между версиями
Сергей (обсуждение | вклад) (→Обратное преобразование) |
Rybak (обсуждение | вклад) (→Ссылки) |
||
Строка 185: | Строка 185: | ||
== Ссылки == | == Ссылки == | ||
− | *[http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%91%D0%B0%D1%80%D1%80%D0%BE%D1%83%D0%B7%D0%B0_%E2%80%94_%D0%A3%D0%B8%D0%BB%D0%B5%D1%80%D0%B0 Преобразование Барроуза — Уилера | + | *[http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%91%D0%B0%D1%80%D1%80%D0%BE%D1%83%D0%B7%D0%B0_%E2%80%94_%D0%A3%D0%B8%D0%BB%D0%B5%D1%80%D0%B0 Преобразование Барроуза — Уилера (Википедия)] |
− | *[http://www.cs.karelia.ru/~aborod/inf/2010/schedule.php.ru Преобразование Барроуза — Уилера | + | *[http://www.cs.karelia.ru/~aborod/inf/2010/schedule.php.ru Преобразование Барроуза — Уилера (cs.karelia.ru)] |
Версия 21:35, 25 сентября 2011
Определение
Определение: |
Преобразование Барроуза — Уилера (Burrows-Wheeler transform, BWT) — это алгоритм, используемый в техниках сжатия данных для преобразования исходных данных. |
bzip2 использует преобразование Барроуза-Уилера для превращения последовательностей многократно чередующихся символов в строки одинаковых символов, затем применяет преобразование MTF (англ. move-to-front), и в конце кодирование Хаффмана.
Описание алгоритма
Преобразование выполняется в три этапа. На первом этапе составляется таблица всех циклических сдвигов входной строки. На втором этапе производится лексикографическая (в алфавитном порядке) сортировка строк таблицы. На третьем этапе в качестве выходной строки выбирается последний столбец таблицы преобразования. Следующий пример иллюстрирует описанный алгоритм:
Пусть нам дана исходная строка
"ABACABA".Трансформация | |||
---|---|---|---|
Вход | Все Перестановки |
Сортировка Строк |
Выход |
ABACABA |
ABACABA BACABAA ACABAAB CABAABA ABAABAC BAABACA AABACAB |
AABACAB ABAABAC ABACABA ACABAAB BAABACA BACABAA CABAABA |
BCABAAA |
Результат вкратце запишем так:
("BCABAAA", 3), где 3 - это номер исходной строки в отсортированной матрице, так как он может понадобиться для обратного преобразования.Следует заметить, что иногда в исходной строке приводится так называемый символ конца строки $, который в преобразовании будет считаться последним символом, тогда сохранение номера исходной строки не требуется. При аналогичном вышеприведённом преобразовании та строчка в матрице, которая будет заканчиваться на символ конца строки и будет исходной ("ABACABA$"). При этом при сортировке матрицы данный символ будет рассматриваться как самый последний после всех символов алфавита. Тогда результат можно записать так
"$CBBAAAA". Он будет эквивалентен первому, так как также содержит все символы исходной строки.Обратное преобразование
Пусть нам дано:
("BCABAAA", 3). Тогда выпишем в столбик нашу преобразованную последовательность символов "BCABAAA". Запишем её как последний столбик предыдущей матрицы (при прямом преобразовании Барроуза — Уилера), при этом все предыдущие столбцы оставляем пустыми. Далее построчно отсортируем матрицу, затем в предыдущий столбец запишем "BCABAAA". Опять построчно отсортируем матрицу. Продолжая таким образом, можно восстановить полный список всех циклических перестановок строки, которую нам надо найти. Выстроив полный отсортированный список перестановок, выберем строку с номером, который нам был изначально дан. В итоге мы получим искомую строку. Алгоритм обратного преобразования описан в таблице ниже:Обратное преобразование | |||||||
---|---|---|---|---|---|---|---|
Вход | |||||||
BCABAAA | |||||||
Добавление 1 | Сортировка 1 | Добавление 2 | Сортировка 2 | Добавление 3 | Сортировка 3 | Добавление 4 | |
B C A B A A A |
A A A A B B C |
BA CA AA BA AB AB AC |
AA AB AB AC BA BA CA |
BAA CAB AAB BAC ABA ABA ACA |
AAB ABA ABA ACA BAA BAC CAB |
BAAB CABA AABA BACA ABAA ABAC ACAB | |
Сортировка 4 | Добавление 5 | Сортировка 5 | Добавление 6 | Сортировка 6 | Добавление 7 | Сортировка 7 | |
AABA ABAA ABAC ACAB BAAB BACA CABA |
BAABA CABAA AABAC BACAB ABAAB ABACA ACABA |
AABAC ABAAB ABACA ACABA BAABA BACAB CABAA |
BAABAC CABAAB AABACA BACABA ABAABA ABACAB ACABAA |
AABACA ABAABA ABACAB ACABAA BAABAC BACABA CABAAB |
BAABACA CABAABA AABACAB BACABAA ABAABAC ABACABA ACABAAB |
AABACAB ABAABAC ABACABA ACABAAB BAABACA BACABAA CABAABA | |
Результат | |||||||
ABACABA |
Следует также заметить, что если нам было бы дано
"$CBBAAAA", то мы также получили бы нашу исходную строку, только с символом конца строки $ на конце: ABACABA$.