Предикат "левый поворот" — различия между версиями
(→Примеры) |
|||
Строка 9: | Строка 9: | ||
- Например, обозначим предикатом EQ(x, y) отношение равенства («x = y»), где ''x'' и ''y'' принадлежат множеству вещественных чисел. В этом случае предикат EQ будет принимать истинное значение для всех равных x и y. | - Например, обозначим предикатом EQ(x, y) отношение равенства («x = y»), где ''x'' и ''y'' принадлежат множеству вещественных чисел. В этом случае предикат EQ будет принимать истинное значение для всех равных x и y. | ||
− | - Более житейским примером может служить предикат ПРОЖИВАЕТ(x, y, z) для отношения «x проживает в городе y на улице z» или ЛЮБИТ(x, y) для «x любит y» | + | - Более житейским примером может служить предикат ПРОЖИВАЕТ(x, y, z) для отношения «x проживает в городе y на улице z» или ЛЮБИТ(x, y) для «x любит y». |
Строка 19: | Строка 19: | ||
Единственное, на что следует обратить внимание — граничные случаи, когда какие-то точки попадают на саму прямую. При этом возникает единственный особый случай, когда вышеописанные проверки ничего не дадут — случай, когда оба отрезка лежат на одной прямой. Этот случай надо рассмотреть отдельно. Для этого достаточно проверить, что проекции этих двух отрезков на оси X и Y пересекаются (часто эту проверку называют "проверкой на bounding box"). | Единственное, на что следует обратить внимание — граничные случаи, когда какие-то точки попадают на саму прямую. При этом возникает единственный особый случай, когда вышеописанные проверки ничего не дадут — случай, когда оба отрезка лежат на одной прямой. Этот случай надо рассмотреть отдельно. Для этого достаточно проверить, что проекции этих двух отрезков на оси X и Y пересекаются (часто эту проверку называют "проверкой на bounding box"). | ||
+ | |||
== Ссылки == | == Ссылки == | ||
* [http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%B4%D0%B8%D0%BA%D0%B0%D1%82 wikipedia.ru - Предикат] | * [http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%B4%D0%B8%D0%BA%D0%B0%D1%82 wikipedia.ru - Предикат] | ||
* [http://e-maxx.ru/algo/segments_intersection_checking e-maxx.ru/algo - Проверка двух отрезков на пересечение] | * [http://e-maxx.ru/algo/segments_intersection_checking e-maxx.ru/algo - Проверка двух отрезков на пересечение] |
Версия 01:24, 5 октября 2011
Допустим нам дана задача: Даны два отрезка AB и CD (они могут вырождаться в точки). Требуется проверить, пересекаются они на плоскости или нет. Для упрощения определения этого факта в вычислительной геометрии используется предикат "левый поворот" (или "по часовой стрелке"). Для начала разберемся, что за зверь такой - Предикат.
Определение: |
Предикат (лат. praedicatum — заявленное, упомянутое, сказанное) — любое математическое высказывание, в котором есть, по меньшей мере, одна переменная |
Примеры
- Например, обозначим предикатом EQ(x, y) отношение равенства («x = y»), где x и y принадлежат множеству вещественных чисел. В этом случае предикат EQ будет принимать истинное значение для всех равных x и y.
- Более житейским примером может служить предикат ПРОЖИВАЕТ(x, y, z) для отношения «x проживает в городе y на улице z» или ЛЮБИТ(x, y) для «x любит y».
Итак, у нас есть задача, с чего начнем её решать? Одно из решений - определить, лежат ли точки концов отрезков по разные стороны от другого отрезка. Вот тут нам и поможет предикат. Два из трех аргументов это точки концов одного отрезка, а последний - один из концов другого отрезка.
Определение: |
Left_Turn(a, b, c) = true, если (b - a)*(c - a) > 0 |
Единственное, на что следует обратить внимание — граничные случаи, когда какие-то точки попадают на саму прямую. При этом возникает единственный особый случай, когда вышеописанные проверки ничего не дадут — случай, когда оба отрезка лежат на одной прямой. Этот случай надо рассмотреть отдельно. Для этого достаточно проверить, что проекции этих двух отрезков на оси X и Y пересекаются (часто эту проверку называют "проверкой на bounding box").