Алгоритм масштабирования потока — различия между версиями
Строка 3: | Строка 3: | ||
== Суть == | == Суть == | ||
− | Пусть существует граф <tex>G</tex> и <tex>\forall (u,v)\in E\colon c_{(u,v)}\in\mathbb N</tex>. Суть алгоритма в нахождении сперва путей с высокой пропускной способностью, чтобы сразу сильно увеличивать поток по этим путям, а затем | + | Пусть существует граф <tex>G</tex> и <tex>\forall (u,v)\in E\colon c_{(u,v)}\in\mathbb N</tex>. Суть алгоритма в нахождении сперва путей с высокой пропускной способностью, чтобы сразу сильно увеличивать поток по этим путям, а затем по всем остальным. Пусть <tex>U</tex> - максимальная пропускная способность. Введём параметр <tex>\Delta = 2^{\lfloor\log_2U\rfloor}</tex>. На каждом шаге будем искать в остаточном графе увеличивающие пути с пропускной способностью не меньше, чем <tex>\Delta</tex>, и увеличивать поток вдоль этих путей. В конце шага будем уменьшать <tex>\Delta</tex> в два раза, и на следующем шаге будем искать увеличивающий путь с новым значением параметра. При значении <tex>\Delta</tex>, равном единице, данный алгоритм становится идентичен [[Алоритм_Эдмондса-Карпа | алгоритму Эдмондса — Карпа]]. Из этого следует, что алгоритм корректен. |
== Оценка сложности == | == Оценка сложности == |
Версия 08:21, 14 октября 2011
Алгоритм масштабирования потока — алгоритм поиска максимального потока путем регулирования пропускной способности ребер. Этот алгоритм работает в предположении, что все пропускные способности ребер целые.
Содержание
Суть
Пусть существует граф алгоритму Эдмондса — Карпа. Из этого следует, что алгоритм корректен.
и . Суть алгоритма в нахождении сперва путей с высокой пропускной способностью, чтобы сразу сильно увеличивать поток по этим путям, а затем по всем остальным. Пусть - максимальная пропускная способность. Введём параметр . На каждом шаге будем искать в остаточном графе увеличивающие пути с пропускной способностью не меньше, чем , и увеличивать поток вдоль этих путей. В конце шага будем уменьшать в два раза, и на следующем шаге будем искать увеличивающий путь с новым значением параметра. При значении , равном единице, данный алгоритм становится идентиченОценка сложности
На каждом шаге алгоритм выполняет в худшем случае BFS. Количество шагов . Итоговая сложность .
увеличений потока. Докажем это. Пусть . В конце шага множество вершин графа можно разбить на две части: и . Все рёбра, выходящие из , имеют остаточную пропускную способность менее . Наибольшее количество ребер между и равно . Следовательно, остаточный поток (поток, который может быть получен на оставшихся шагах) на фазе с текущим значением максимально составляет . Каждый увеличивающий путь при данном имеет пропускную способность как минимум . На предыдущем шаге, с масштабом , остаточный поток ограничен . Значит максимальное число появившихся увеличивающих путей равно . Увеличивающий путь можно найти за , используяПсевдокод
Capacity-Scalingwhile do while в существует путь с пропускной способностью большей do путь с пропускной способностью большей увеличить поток по ребрам на обновить