Суперпозиции — различия между версиями
Lukyanov (обсуждение | вклад) |
Lukyanov (обсуждение | вклад) |
||
Строка 30: | Строка 30: | ||
{| | {| | ||
|1. <tex> x_{1}, ..., x_{i-1}</tex> | |1. <tex> x_{1}, ..., x_{i-1}</tex> | ||
− | | | + | |{{---}} аргументы функции <tex>f</tex> до подставленного значения функции <tex>g</tex> |
|- | |- | ||
|2. <tex> x_{i}, ..., x_{i+m-1} </tex> | |2. <tex> x_{i}, ..., x_{i+m-1} </tex> | ||
− | | | + | |{{---}} используются как аргументы для вычисления значения функции <tex>g(y_{1}, ..., y_{m})</tex> |
|- | |- | ||
|3. <tex> x_{i+m}, ..., x_{n+m-1} </tex> | |3. <tex> x_{i+m}, ..., x_{n+m-1} </tex> | ||
− | | | + | |{{---}} аргументы функции <tex>f</tex> после подставленного значения функции <tex>g</tex> |
|} | |} | ||
Версия 06:39, 18 октября 2011
Определение: |
Суперпозиция (сложная функция) — это функция, полученная из некоторого множества функций путем подстановки одной функции в другую или отождествления переменных. |
Множество всех возможных не эквивалентных друг другу суперпозиций данного множества функций образует замыкание данного множества функций.
Содержание
Способы получения суперпозиций
Рассмотрим две булевы функции: функцию от аргументов и функцию от аргументов .
Тогда мы можем получить новую функцию из имеющихся двумя способами:
- Подстановкой одной функции в качестве некоторого аргумента для другой;
- Отождествлением аргументов функций.
Подстановка одной функции в другую
Определение: |
Подстановкой функции | в функцию называется замена -того аргумента функции значением функции :
Допускается также не только подстановка одной функции в другую, но и подстановка функции в саму себя.
При подстановке функции
вместо -того аргумента функции , результирующая функция будет принимать аргументы, которые можно разделить на следующие блоки:1. | — аргументы функции | до подставленного значения функции
2. | — используются как аргументы для вычисления значения функции |
3. | — аргументы функции | после подставленного значения функции
Пример:
Исходные функции:
— подстановка функции вместо второго аргумента функции . В данном примере при помощи подстановки мы получили функцию .
Отождествление переменных
Определение: |
Отождествлением переменных называется подстановка | -того аргумента функции вместо j-того аргумента:
Таким образом, при отождествлении переменных мы получаем функцию с количеством аргументов .
Пример:
— исходная функция
— функция с отождествленными первым и вторым аргументами
Очевидно, в данном примере мы получили функцию
— проектор единственного аргумента.Ранги суперпозиций
Определение: |
Ранг суперпозиции — это минимальное число подстановок и отождествлений, за которое суперпозиция может быть получена из исходного множества функций. Суперпозиция | ранга обозначается как
См.также
Литература
- Осипова В.А., Основы дискретной математики: Учебное пособие, М.: ФОРУМ: ИНФРА-М, 2006, стр 62-63