Теорема Менгера — различия между версиями
Строка 3: | Строка 3: | ||
==Подготовка к доказательству== | ==Подготовка к доказательству== | ||
− | Для доказательства мы | + | Для доказательства мы будем ползьоваться развитой раннее [[Определение сети, потока|теорией потоков]]. Кроме базовых определений нам потребуется понятие [[Дополняющая сеть, дополняющий путь| остаточной сети]] (иначе - дополнительной сети), а также [[Теорема_Форда-Фалкерсона|теорема Форда-Фалкерсона]]. Кроме того потребуется лемма о целочисленности потока, которую сейчас и докажем: |
{{Лемма | {{Лемма | ||
|about=о целочисленности потока | |about=о целочисленности потока |
Версия 06:58, 22 октября 2011
Теорема Менгера представляет собой группу теорем, связывающих такие понятия на графах как k-связность и количество непересекающихся путей относительно двух выделенных вершин. Возникают различные варианты очень похожих друг на друга по формулировке теорем в зависимости от того, рассматриваем ли мы ситуацию в ориентированном или неориентированном графе, и подразумеваем ли реберную связность и реберно непересекающиеся пути или же вершинную связность и вершинно непересекающиеся пути.
Подготовка к доказательству
Для доказательства мы будем ползьоваться развитой раннее теорией потоков. Кроме базовых определений нам потребуется понятие остаточной сети (иначе - дополнительной сети), а также теорема Форда-Фалкерсона. Кроме того потребуется лемма о целочисленности потока, которую сейчас и докажем:
Лемма (о целочисленности потока): |
Если пропускные способности всех ребер целочисленные (сеть целочислена), то существует максимальный поток, целочисленный на каждом ребре. |
Доказательство: |
|
Теорема
Теперь сама теорема будет тривиальным следствием. В начале сформулируем реберную версию для случая ориентированного графа.
Теорема (Менгера о реберной двойственности в ориентированном графе): |
Между вершинами и реберно непересекающихся путей после удаления ребер путь из в . |
Доказательство: |
Назначим каждому ребру пропускную способность 1. Тогда существует максимальный поток целочисленный на каждом ребре(по лемме). Рассмотрим минимальный |
Литература
- Ловас Л., Пламмер М. Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии 1998. 656 с. ISBN 5-03-002517-0 (глава 2.4 стр. 117)