Теорема Менгера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 3: Строка 3:
  
 
==Подготовка к доказательству==
 
==Подготовка к доказательству==
Для доказательства мы будем ползьоваться развитой раннее [[Определение сети, потока|теорией потоков]]. Кроме базовых определений нам потребуется понятие [[Дополняющая сеть, дополняющий путь| остаточной сети]] (иначе - дополнительной сети), а также [[Теорема_Форда-Фалкерсона|теорема Форда-Фалкерсона]]. Кроме того потребуется лемма о целочисленности потока, которую сейчас и докажем:
+
Для доказательства мы будем пользоваться развитой раннее [[Определение сети, потока|теорией потоков]]. Кроме базовых определений нам потребуется понятие [[Дополняющая сеть, дополняющий путь| остаточной сети]] (иначе - дополнительной сети), а также [[Теорема_Форда-Фалкерсона|теорема Форда-Фалкерсона]].
 +
 
 +
//что-то про разрез .. [[Разрез, лемма о потоке через разрез]]
 +
 
 +
Кроме того потребуется лемма о целочисленности потока, которую сейчас и докажем:
 
{{Лемма
 
{{Лемма
 
|about=о целочисленности потока
 
|about=о целочисленности потока
Строка 20: Строка 24:
  
 
==Теорема==
 
==Теорема==
Теперь сама теорема будет тривиальным следствием. В начале сформулируем реберную версию для случая ориентированного графа.
+
Теперь сама теорема будет тривиальным следствием. В начале сформулируем и докажем реберную версию для случая ориентированного графа.
  
 
{{Теорема
 
{{Теорема
Строка 26: Строка 30:
 
|statement=Между вершинами <tex>u</tex> и <tex>v\; \exists L</tex> реберно непересекающихся путей <tex>\Leftrightarrow</tex> после удаления <tex>\forall L-1</tex> ребер <tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>.
 
|statement=Между вершинами <tex>u</tex> и <tex>v\; \exists L</tex> реберно непересекающихся путей <tex>\Leftrightarrow</tex> после удаления <tex>\forall L-1</tex> ребер <tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>.
 
|proof=
 
|proof=
Назначим каждому ребру пропускную способность 1. Тогда существует максимальный поток целочисленный на каждом ребре(по лемме). Рассмотрим минимальный
+
Назначим каждому ребру пропускную способность 1.  
 +
 
 +
<=
 +
Тогда существует максимальный поток, целочисленный на каждом ребре(по лемме).  
 +
По теореме Форда-Фалкерсона для такого потока существует разрез с пропускной способностью равной потоку (и этот разрез минимален среди всех возможных разрезов). По условию "после удаления <tex>\forall L-1</tex> (и в частности тех, что находятся в нашем разрезе) ребер все еще<tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>", значит пропускная способность разреза <tex>\geqslant L = |f|</tex>. А т.к. поток целочисленный , то это и означает, что <tex>\exists L</tex> реберно непересекающихся путей (чуть позже дадим аккуратное объяснение этому).
 +
 
 +
=>
 +
<tex>\exists L</tex> реберно непересекающихся путей, а значит удалив любых <tex>L-1</tex> ребер хотя бы один путь останется останется не тронутым (принцип Дирихле). Это и означает <tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>.
 
}}
 
}}
 
==Литература==
 
==Литература==

Версия 08:42, 22 октября 2011

Эта статья находится в разработке!

Теорема Менгера представляет собой группу теорем, связывающих такие понятия на графах как k-связность и количество непересекающихся путей относительно двух выделенных вершин. Возникают различные варианты очень похожих друг на друга по формулировке теорем в зависимости от того, рассматриваем ли мы ситуацию в ориентированном или неориентированном графе, и подразумеваем ли реберную связность и реберно непересекающиеся пути или же вершинную связность и вершинно непересекающиеся пути.

Подготовка к доказательству

Для доказательства мы будем пользоваться развитой раннее теорией потоков. Кроме базовых определений нам потребуется понятие остаточной сети (иначе - дополнительной сети), а также теорема Форда-Фалкерсона.

//что-то про разрез .. Разрез, лемма о потоке через разрез

Кроме того потребуется лемма о целочисленности потока, которую сейчас и докажем:

Лемма (о целочисленности потока):
      Если пропускные способности всех ребер целочисленные (сеть целочислена), то существует максимальный поток, целочисленный на каждом ребре.
Доказательство:
[math]\triangleright[/math]
Для доказательства достаточно рассмотреть алгоритм Форда-Фалкерсона для поиска максимального потока. Алгоритм делает примерно следующее (подробней - читай в соответствующей статье):
1. В начале берем какой-нибудь поток за начальный (например, нулевой).
2. В остаточной сети этого потока находим какой-нибудь путь из источника к стоку и увеличиваем поток на пропускную способность этого пути.
3. Повторяем пункт 2 до тех пор, пока находится хоть какой-то путь в остаточной сети.
То, что получится в конце, будет максимальным потоком. В случае целочисленной сети достаточно в качестве начального приближения взять нулевой поток, и не трудно видеть, что на каждой итерации (в том числе и последней) этот поток будет оставаться целочисленным, что и докажет требуемое.
[math]\triangleleft[/math]

Теорема

Теперь сама теорема будет тривиальным следствием. В начале сформулируем и докажем реберную версию для случая ориентированного графа.

Теорема (Менгера о реберной двойственности в ориентированном графе):
Между вершинами [math]u[/math] и [math]v\; \exists L[/math] реберно непересекающихся путей [math]\Leftrightarrow[/math] после удаления [math]\forall L-1[/math] ребер [math]\exists[/math] путь из [math]u[/math] в [math]v[/math].
Доказательство:
[math]\triangleright[/math]

Назначим каждому ребру пропускную способность 1.

<= Тогда существует максимальный поток, целочисленный на каждом ребре(по лемме). По теореме Форда-Фалкерсона для такого потока существует разрез с пропускной способностью равной потоку (и этот разрез минимален среди всех возможных разрезов). По условию "после удаления [math]\forall L-1[/math] (и в частности тех, что находятся в нашем разрезе) ребер все еще[math]\exists[/math] путь из [math]u[/math] в [math]v[/math]", значит пропускная способность разреза [math]\geqslant L = |f|[/math]. А т.к. поток целочисленный , то это и означает, что [math]\exists L[/math] реберно непересекающихся путей (чуть позже дадим аккуратное объяснение этому).

=>

[math]\exists L[/math] реберно непересекающихся путей, а значит удалив любых [math]L-1[/math] ребер хотя бы один путь останется останется не тронутым (принцип Дирихле). Это и означает [math]\exists[/math] путь из [math]u[/math] в [math]v[/math].
[math]\triangleleft[/math]

Литература

  • Ловас Л., Пламмер М. Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии 1998. 656 с. ISBN 5-03-002517-0 (глава 2.4 стр. 117)