Расстояние Хэмминга — различия между версиями
Whiplash (обсуждение | вклад) |
Whiplash (обсуждение | вклад) |
||
Строка 20: | Строка 20: | ||
Третье свойство говорит, что дорога через третий объект с всегда длиннее, нежели прямой путь. Его обычно называют ''неравенством треугольника'' за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны. | Третье свойство говорит, что дорога через третий объект с всегда длиннее, нежели прямой путь. Его обычно называют ''неравенством треугольника'' за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны. | ||
+ | |||
+ | '''Доказательство:''' | ||
+ | Пусть слова '''x''' и '''y''' отличаются в некоторой позиции '''t'''. Тогда какое бы слово '''z''' мы ни взяли, оно в этой позиции будет отличаться по крайней мере от одного из слов '''x''' и '''y'''. Следовательно, суммируя в правой части <tex>~d(x, z)</tex> и <tex>~d(z, y)</tex>, мы обязательно учтем все позиции, в которых различались слова '''x''' и '''y'''. | ||
+ | |||
+ | |||
+ | Математики договорились любую функцию, обладающую указанными тремя свойствами, называть расстоянием. | ||
== Ссылки == | == Ссылки == | ||
[http://ru.wikipedia.org/wiki/Расстояние_Хэмминга Расстояние Хэмминга — Википедия] | [http://ru.wikipedia.org/wiki/Расстояние_Хэмминга Расстояние Хэмминга — Википедия] |
Версия 22:33, 22 октября 2011
Расстояние Хэмминга — число позиций, в которых соответствующие цифры двух двоичных слов одинаковой длины различны. В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых k-ичных алфавитов и служит метрикой различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности.
Пример
Свойства
Расстояние Хэмминга обладает свойствами метрики, удовлетворяя следующим условиям:
1)
2)
Объект x удален от объекта y так же, как объект y удален от объекта x.
3)
Третье свойство говорит, что дорога через третий объект с всегда длиннее, нежели прямой путь. Его обычно называют неравенством треугольника за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны.
Доказательство: Пусть слова x и y отличаются в некоторой позиции t. Тогда какое бы слово z мы ни взяли, оно в этой позиции будет отличаться по крайней мере от одного из слов x и y. Следовательно, суммируя в правой части
и , мы обязательно учтем все позиции, в которых различались слова x и y.
Математики договорились любую функцию, обладающую указанными тремя свойствами, называть расстоянием.