Теорема Менгера — различия между версиями
Строка 28: | Строка 28: | ||
{{Теорема | {{Теорема | ||
|about=Менгера о реберной двойственности в ориентированном графе | |about=Менгера о реберной двойственности в ориентированном графе | ||
− | |statement=Между вершинами <tex>u</tex> и <tex>v\; \exists L</tex> реберно непересекающихся путей <tex>\Leftrightarrow</tex> после удаления <tex>\forall L-1</tex> ребер <tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>. | + | |statement=Между вершинами <tex>u</tex> и <tex>v\; \exists L</tex> реберно непересекающихся путей <tex>\Leftrightarrow</tex> после удаления <tex>\forall L-1</tex> ребер <tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>. |
|proof= | |proof= | ||
− | + | :<tex>\Leftarrow</tex> | |
− | + | :Назначим каждому ребру пропускную способность 1. Тогда существует максимальный поток, целочисленный на каждом ребре(по лемме). | |
− | Тогда существует максимальный поток, целочисленный на каждом ребре(по лемме). | + | :По теореме Форда-Фалкерсона для такого потока существует разрез с пропускной способностью равной потоку (и этот разрез минимален среди всех возможных разрезов). По условию «после удаления <tex>\forall L-1</tex> (и в частности тех, что находятся в нашем разрезе) ребер все еще <tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>», значит пропускная способность разреза <tex>\geqslant L = |f|</tex>. А так как поток целочисленный, то это и означает, что <tex>\exists L</tex> реберно непересекающихся путей (чуть позже дадим аккуратное объяснение этому). |
− | По теореме Форда-Фалкерсона для такого потока существует разрез с пропускной способностью равной потоку (и этот разрез минимален среди всех возможных разрезов). По условию | ||
− | + | :<tex>\Rightarrow</tex> | |
− | <tex>\exists L</tex> реберно непересекающихся путей, а значит удалив любых <tex>L-1</tex> ребер хотя бы один путь останется останется не тронутым (принцип Дирихле). Это и означает <tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>. | + | :<tex>\exists L</tex> реберно непересекающихся путей, а значит удалив любых <tex>L-1</tex> ребер хотя бы один путь останется останется не тронутым (принцип Дирихле). Это и означает <tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>. |
}} | }} | ||
− | Небольшой комментарий к доказательству < | + | Небольшой комментарий к доказательству <tex>\Leftarrow</tex>: |
− | Если в сети, где все пропускные способности равны 1 существует целочисленный поток величиной <tex>L</tex> то существует и <tex>L</tex> реберно непересекающихся путей. Поясним это: найдем какой-нибудь маршрут из <tex>u</tex> в <tex>v</tex> лежащий только на ребрах где поток равен 1. Такой маршут обязательно | + | |
+ | ''Если в сети, где все пропускные способности равны 1 существует целочисленный поток величиной <tex>L</tex> то существует и <tex>L</tex> реберно непересекающихся путей.'' | ||
+ | |||
+ | Поясним это: найдем какой-нибудь маршрут из <tex>u</tex> в <tex>v</tex> лежащий только на ребрах где поток равен 1. Такой маршут обязательно существует, пока величина потока больше 0 (нетрудно показать, что иначе придем к противоречию). Удалив все ребра находящиеся в этом маршруте и оставив все остальное неизменным, придем к потоку величиной <tex>L-1</tex>. Ясно, что можно повторить тоже самое еще <tex>L-1</tex> раз, и, таким образом мы неизбежно выделим <tex>L</tex> реберно непересекающихся маршрутов, что и требуется. | ||
//все остальные теоремы | //все остальные теоремы |
Версия 23:54, 22 октября 2011
Теорема Менгера представляет собой группу теорем, связывающих такие понятия на графах как k-связность и количество непересекающихся путей относительно двух выделенных вершин. Возникают различные варианты очень похожих друг на друга по формулировке теорем в зависимости от того, рассматриваем ли мы ситуацию в ориентированном или неориентированном графе, и подразумеваем ли реберную k-связность и реберно непересекающиеся пути или же вершинную k-связность и вершинно непересекающиеся пути.
Подготовка к доказательству
Для доказательства мы будем пользоваться развитой раннее теорией потоков. Кроме базовых определений нам потребуется понятие остаточной сети (иначе - дополнительной сети), а также теорема Форда-Фалкерсона.
//что-то про разрез .. Разрез, лемма о потоке через разрез
Кроме того потребуется лемма о целочисленности потока, которую сейчас и докажем:
Лемма (о целочисленности потока): |
Если пропускные способности всех ребер целочисленные (сеть целочислена), то существует максимальный поток, целочисленный на каждом ребре. |
Доказательство: |
|
Теорема
Теперь сама теорема будет тривиальным следствием. В начале сформулируем и докажем реберную версию для случая ориентированного графа.
Теорема (Менгера о реберной двойственности в ориентированном графе): |
Между вершинами и реберно непересекающихся путей после удаления ребер путь из в . |
Доказательство: |
|
Небольшой комментарий к доказательству
:Если в сети, где все пропускные способности равны 1 существует целочисленный поток величиной
то существует и реберно непересекающихся путей.Поясним это: найдем какой-нибудь маршрут из
в лежащий только на ребрах где поток равен 1. Такой маршут обязательно существует, пока величина потока больше 0 (нетрудно показать, что иначе придем к противоречию). Удалив все ребра находящиеся в этом маршруте и оставив все остальное неизменным, придем к потоку величиной . Ясно, что можно повторить тоже самое еще раз, и, таким образом мы неизбежно выделим реберно непересекающихся маршрутов, что и требуется.//все остальные теоремы
Смотри также
Литература
- Ловас Л., Пламмер М. Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии 1998. 656 с. ISBN 5-03-002517-0 (глава 2.4 стр. 117)