Расстояние Хэмминга — различия между версиями
Whiplash (обсуждение | вклад) |
Whiplash (обсуждение | вклад) |
||
Строка 13: | Строка 13: | ||
''Расстояние Хэмминга'' обладает свойствами метрики, удовлетворяя следующим условиям: | ''Расстояние Хэмминга'' обладает свойствами метрики, удовлетворяя следующим условиям: | ||
− | + | #<tex>~d(x, y) = 0 \iff x = y</tex> | |
− | + | #<tex>~d(x,y)=d(y,x)</tex> ''(Объект '''x''' удален от объекта '''y''' так же, как объект '''y''' удален от объекта '''x''')'' | |
− | + | #<tex>~d(x,z) \le d(x,y) + d(y,z)</tex> | |
− | |||
− | Объект '''x''' удален от объекта '''y''' так же, как объект '''y''' удален от объекта '''x''' | ||
− | |||
− | |||
Третье свойство говорит, что дорога через третий объект с всегда длиннее, нежели прямой путь. Его обычно называют ''неравенством треугольника'' за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны. | Третье свойство говорит, что дорога через третий объект с всегда длиннее, нежели прямой путь. Его обычно называют ''неравенством треугольника'' за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны. |
Версия 05:42, 25 октября 2011
Определение: |
Расстояние Хэмминга (Hamming distance) — число позиций, в которых соответствующие цифры двух двоичных слов одинаковой длины различны. |
В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых k-ичных алфавитов и служит метрикой различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности.
Пример
Свойства
Расстояние Хэмминга обладает свойствами метрики, удовлетворяя следующим условиям:
- (Объект x удален от объекта y так же, как объект y удален от объекта x)
Третье свойство говорит, что дорога через третий объект с всегда длиннее, нежели прямой путь. Его обычно называют неравенством треугольника за его естественную геометрическую аналогию: сумма двух сторон треугольника всегда больше третьей стороны.
Математики договорились любую функцию, обладающую указанными тремя свойствами, называть расстоянием.
Доказательство неравенства треугольника
Утверждение: |
Пусть слова x и y отличаются в некоторой позиции t. |
Тогда какое бы слово z мы ни взяли, оно в этой позиции будет отличаться по крайней мере от одного из слов x и y. Следовательно, суммируя в правой части | и , мы обязательно учтем все позиции, в которых различались слова x и y.