35
правок
Изменения
→Ориентированные графы
==Ориентированные графы==
{{Определение
|definition =
'''Ориентированным графом''' (directed graph) <tex>G</tex> называется пара <tex>G = (V, E)</tex>, где <tex>V</tex> - конечное множество вершин, а <tex> E \subset V \times V </tex> - множество рёбер.
}}
Заметим, что по такому определению любые две вершины <tex>u,~v</tex> нельзя соединить более чем одним ребром <tex>(u, v)</tex>.
'''Ориентированным графом''' <tex>G</tex> называется четверка <tex>G = (V, E, beg, end)</tex> , где <tex>beg, end : E \rightarrow V </tex>, а <tex>V</tex> и <tex>E</tex> - некоторые абстрактные множества. Иногда граф, построенный таким образом называют '''мультиграфом'''. В мультиграфе не допускаются петли (см. определение ниже), но пары вершин допускается соединять более чем одним ребром. Такие ребра называются '''кратными''' (иначе - '''параллельные''').
[[Файл: directed_graph.png|thumb|300px|center|Ориентированный граф<br><font color=#ED1C24>Красным</font> выделено ребро (6, 2)<br><font color=#22B14C>Зеленым</font> обозначена петля (6, 6)]]
{{Определение
'''Ребром''' ориентированного графа называют упорядоченную пару вершин <tex> (v, u) \in E </tex>.
}}
В графе ребро, концы которого совпадают, то есть <tex>e=(v,v)</tex>, называется <b>петлей</b>. Мультиграф с петлями принято называть '''псевдографом'''.
[[Файл: Multigraph.png|thumb|300px|right|а) Мультиграф<br> б) Псевдограф]]
Если имеется ребро <tex> (v, u) \in E </tex>, то иногда говорят, что <tex> v </tex> - <b>предок</b> <tex> u </tex>. Также вершины <tex> u </tex> и <tex> v </tex> называют <b>смежными</b>. Граф с <tex> p </tex> вершинами и <tex> q </tex> ребрами называют <tex> (p, q) </tex> - графом. <tex> (1, 0) </tex> - граф называют <b>тривиальным</b>.