Получение номера по объекту — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 13: Строка 13:
  
 
== Перестановки ==
 
== Перестановки ==
Рассмотрим алгоритм получения i-ой в лексикографическом порядке перестановки размера n.
+
Рассмотрим алгоритм получения номера в лексикографическом порядке по данной перестановки размера n.
 
   <tex>P_{n} </tex> ''{{---}} количество перестановок размера n
 
   <tex>P_{n} </tex> ''{{---}} количество перестановок размера n
   permutation[n] ''{{---}} искомая перестановка''
+
   permutation[n] ''{{---}} данная перестановка''
 
   was[n] ''{{---}} использовали ли мы уже эту цифру в перестановке''
 
   was[n] ''{{---}} использовали ли мы уже эту цифру в перестановке''
 
   '''for'''  i = 1  '''to'''  n  '''do'''                              ''//n - количество цифр в перестановке''
 
   '''for'''  i = 1  '''to'''  n  '''do'''                              ''//n - количество цифр в перестановке''
 
     alreadyWas = (numOfPermutation-1) div <tex>P_{n-i} </tex>      ''// сколько цифр уже полностью заняты перестановками с меньшим номером''
 
     alreadyWas = (numOfPermutation-1) div <tex>P_{n-i} </tex>      ''// сколько цифр уже полностью заняты перестановками с меньшим номером''
    numOfPermutation = ((numOfPermutation-1) mod <tex>P_{n-i} </tex>) + 1
 
 
     ''//сейчас мы должны поставить ту цифру, которая еще полностью не занята, т.е. alreadyWas+1, которая еще не занята''
 
     ''//сейчас мы должны поставить ту цифру, которая еще полностью не занята, т.е. alreadyWas+1, которая еще не занята''
     '''for'''  j = 1  '''to'''  n '''do'''
+
     '''for'''  j = 1  '''to'''  i-1 '''do'''
 
       '''if'''  was[j] = false   
 
       '''if'''  was[j] = false   
         '''then '''  cntFree++
+
         '''then '''  numOfPermutation+= <tex>P_{n-i} </tex>
              '''if'''  cntFree = alreadyWas+1 
 
                '''then '''  ans[i] = j
 
                        was[j] = true
 
  
 
Данный алгоритм работает за <tex>O(n^2) </tex>. Мы можем посчитать <tex>P_{n} </tex> за <tex>O(n) </tex>. Асимптотику можно улучшить  
 
Данный алгоритм работает за <tex>O(n^2) </tex>. Мы можем посчитать <tex>P_{n} </tex> за <tex>O(n) </tex>. Асимптотику можно улучшить  

Версия 06:22, 30 октября 2011

Общий алгоритм получения номера в лексикографическом порядке по комбинаторному объекту

Номер данного комбинаторного объекта равен количеству меньших в лексикографическом порядке комбинаторных объектов плюс 1(нумерацию ведём с 1).Все объекты меньшие нашего можно разбить на непересекающиеся группы по длине совпадающего префикса.Тогда количество меньших объектов можно представить как сумму количеств объектов у которых префикс длины i совпадает , а i+1 элемент лексикографически меньше i+1-го в данном объекте(i=0..n-1). Следующий алгоритм вычисляет эту сумму

 numOfObject=1                              // numOfObject — искомый номер комбинаторного объекта
 for  i = 1  to  n  do                      //перебираем элементы комбинаторного объекта
   for  j = 1  to  i-1  do                      //перебираем элементы которые в лексикографическом порядке меньше рассматриваемого
     if элемент j можно поставить на i-e место
       then numOfObject+=(коллличество комбинаторных объектов с данным префиксом)

т.е. он правильно находит номер данного объекта.

Несложно понять, что корректность алгоритма следует из его построения. Сложность алгоритма [math]O(n^{2}f(1..i)) [/math], где [math]f(1..i)[/math] - сложность вычисления количества комбинаторных объектов с данным префиксом. Основную сложность при построении алгоритмов генерации комбинаторных объектов составляет вычисление количества комбинаторных объектов с данным префиксом. Приведем примеры способов нахождения количества некоторых из комбинаторных объектов.

Перестановки

Рассмотрим алгоритм получения номера в лексикографическом порядке по данной перестановки размера n.

 [math]P_{n} [/math] — количество перестановок размера n
 permutation[n] — данная перестановка
 was[n] — использовали ли мы уже эту цифру в перестановке
 for  i = 1  to  n  do                               //n - количество цифр в перестановке
   alreadyWas = (numOfPermutation-1) div [math]P_{n-i} [/math]      // сколько цифр уже полностью заняты перестановками с меньшим номером
   //сейчас мы должны поставить ту цифру, которая еще полностью не занята, т.е. alreadyWas+1, которая еще не занята
   for  j = 1  to  i-1  do
     if  was[j] = false  
       then   numOfPermutation+= [math]P_{n-i} [/math] 

Данный алгоритм работает за [math]O(n^2) [/math]. Мы можем посчитать [math]P_{n} [/math] за [math]O(n) [/math]. Асимптотику можно улучшить до [math]O(n log {n}) [/math], если использовать структуры данных, которые позволяют искать i-ый элемент множества и удалять элемент множества за [math]O( log {n}) [/math]. Например декартово дерево по неявному ключу.


Битовые вектора

См. также

Получение объекта по номеру