Получение номера по объекту — различия между версиями
| Watson (обсуждение | вклад)  (→Общий алгоритм получения номера в лексикографическом порядке по комбинаторному объекту) | Watson (обсуждение | вклад)  | ||
| Строка 29: | Строка 29: | ||
| == См. также == | == См. также == | ||
| [[Получение объекта по номеру|Получение объекта по номеру]] | [[Получение объекта по номеру|Получение объекта по номеру]] | ||
| + | Программирование в алгоритмах / С. М. Окулов. — М.: БИНОМ. Лаборатория знаний, 2002. стр.31 | ||
| [[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
| [[Категория: Комбинаторика]] | [[Категория: Комбинаторика]] | ||
Версия 07:02, 30 октября 2011
Содержание
Общий алгоритм получения номера в лексикографическом порядке по комбинаторному объекту
Номер данного комбинаторного объекта равен количеству меньших в лексикографическом порядке комбинаторных объектов плюс 1(нумерацию ведём с 1).Все объекты меньшие нашего можно разбить на непересекающиеся группы по длине совпадающего префикса.Тогда количество меньших объектов можно представить как сумму количеств объектов у которых префикс длины i совпадает , а i+1 элемент лексикографически меньше i+1-го в данном объекте(i=0..n-1). Следующий алгоритм вычисляет эту сумму
 numOfObject=1                              // numOfObject — искомый номер комбинаторного объекта
 for  i = 1  to  n  do                      //перебираем элементы комбинаторного объекта
   for  j = 1  to  i-1  do                      //перебираем элементы которые в лексикографическом порядке меньше рассматриваемого
     if элемент j можно поставить на i-e место
       then numOfObject+=(коллличество комбинаторных объектов с данным префиксом)
т.е. он правильно находит номер данного объекта.
Несложно понять, что корректность алгоритма следует из его построения. Сложность алгоритма , где - сложность вычисления количества комбинаторных объектов с данным префиксом. Основную сложность при построении алгоритмов генерации комбинаторных объектов составляет вычисление количества комбинаторных объектов с данным префиксом. Приведем примеры способов нахождения количества некоторых из комбинаторных объектов.
Перестановки
Рассмотрим алгоритм получения номера в лексикографическом порядке по данной перестановки размера n.
— количество перестановок размера n permutation[n] — данная перестановка was[n] — использовали ли мы уже эту цифру в перестановке for i = 1 to n do //n - количество цифр в перестановке for j = 1 to a[i]-1 do перебираем элемент который может стоять на i-м месте лексикографически меньше нашего if was[j] = false если элемент j ранее не был использован then numOfPermutation += // все перестановки с префиксом длиной i-1 равным нашему, и i-й элемент у которых меньше нашего в лексикографическом порядке идут раньше данной престановки was[i] = true // элемент i использован
Данный алгоритм работает за .
Битовые вектора
См. также
Получение объекта по номеру Программирование в алгоритмах / С. М. Окулов. — М.: БИНОМ. Лаборатория знаний, 2002. стр.31
