K-связность — различия между версиями
Строка 32: | Строка 32: | ||
− | + | Справедливы следующие утверждения: | |
* Наименьшее число вершин, разделяющих две несмежные вершины <tex> u </tex> и <tex> v </tex>, равно наибольшему числу простых путей, не имеющих общих вершин, соединяющих <tex> u </tex> и <tex> v </tex>. (См.[[Теорема Менгера, альтернативное доказательство|''Теорема Менгера для вершинной <tex>k - </tex> связности'']]) | * Наименьшее число вершин, разделяющих две несмежные вершины <tex> u </tex> и <tex> v </tex>, равно наибольшему числу простых путей, не имеющих общих вершин, соединяющих <tex> u </tex> и <tex> v </tex>. (См.[[Теорема Менгера, альтернативное доказательство|''Теорема Менгера для вершинной <tex>k - </tex> связности'']]) | ||
Строка 49: | Строка 49: | ||
− | + | Тогда: | |
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
Строка 57: | Строка 57: | ||
==Смотри также== | ==Смотри также== | ||
* [[Теорема Менгера]] | * [[Теорема Менгера]] | ||
− | + | * [[Теорема Менгера, альтернативное доказательство]] | |
==Литература== | ==Литература== | ||
Версия 08:55, 3 ноября 2011
Связность - одна из топологических характеристик графа.
Определение: |
Граф называется вершинно , если удаление любых - связным вершин оставляет граф связным. |
Вершинной связностью графа называется
вершинно - связен .
Полный граф
.
Определение: |
Граф называется реберно , если удаление любых - связным ребер оставляет граф связным. |
Реберной связностью графа называется реберно - связен
При
.
Если граф имеет вершин и , то , где - минимальная степень вершин графа
Рассмотрим граф .
Пусть
- множество вершин/ребер/вершин и ребер.Рассмотрим вершины
и .разделяет и , если и принадлежат разным компонентам связности графа , который получается удалением элементов множества из .
Справедливы следующие утверждения:
- Наименьшее число вершин, разделяющих две несмежные вершины Теорема Менгера для вершинной ) связности и , равно наибольшему числу простых путей, не имеющих общих вершин, соединяющих и . (См.
Тогда:
Утверждение: |
Граф является вершинно - связным любая пара его вершин соединена по крайней мере вершинно непересекающимися путями. |
Подобные теоремы справедливы и для реберной связности. То есть:
- Теорема Менгера для реберной ) связности для всех пар вершин и существует реберно непересекающихся путей из в . (См.
Тогда:
Утверждение: |
Граф является реберно - связным любая пара его вершин соединена по крайней мере - реберно непересекающимися путями. |
Смотри также
Литература
- Харари Ф. Теория графов.[1] — М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)
- Форд Л., Фалкерсон Д., Потоки в сетях, пер. с англ., М., 1966