K-связность — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 40: Строка 40:
 
}}
 
}}
  
Подобная теорема справедлива и для реберной связности. То есть:
+
Подобная теорема справедлива и для реберной связности. То есть из [[Теорема Менгера, альтернативное доказательство|''теоремы Менгера для реберной <tex>k - </tex> связности'']] следует:
  
* <tex>\lambda(G) = k</tex> <tex>\Leftrightarrow</tex>  для всех пар вершин <tex> u </tex> и <tex> v </tex> существует <tex>k</tex> реберно непересекающихся путей из <tex> u </tex> в <tex> v </tex>. (См.[[Теорема Менгера, альтернативное доказательство|''Теорема Менгера для реберной <tex>k - </tex> связности'']])
 
 
 
Тогда:
 
 
{{Утверждение
 
{{Утверждение
 
|statement=
 
|statement=

Версия 10:36, 6 ноября 2011

Связность - одна из топологических характеристик графа.

Определение:
Граф называется вершинно [math]k[/math] - связным, если удаление любых [math] (k - 1) [/math] вершин оставляет граф связным.


Вершинной связностью графа называется [math] \varkappa (G) = \max \{ k | G [/math] вершинно [math] k [/math] - связен [math] \} [/math].

Полный граф [math] \varkappa (K_n) = n - 1 [/math].


Определение:
Граф называется реберно [math] l [/math] - связным, если удаление любых [math] (l - 1) [/math] ребер оставляет граф связным.


Реберной связностью графа называется [math] \lambda(G) = \max \{ l | G [/math] реберно [math] l [/math] - связен [math] \} [/math]

При [math] n = 1, \lambda (K_1) = 0 [/math] .

Рассмотрим граф [math] G [/math] .

Пусть [math] S [/math] - множество вершин/ребер/вершин и ребер.

Рассмотрим вершины [math] u [/math] и [math] v [/math].

[math] S [/math] разделяет [math] u [/math] и [math] v [/math], если [math] u [/math] и [math] v [/math] принадлежат разным компонентам связности графа [math] G \smallsetminus S [/math], который получается удалением элементов множества [math] S [/math] из [math] G [/math].


Справедливы следующие утверждения:


Тогда:

Утверждение:
Граф [math] G [/math] является вершинно [math]k[/math] - связным [math]\Leftrightarrow [/math] любая пара его вершин соединена по крайней мере [math]k[/math] вершинно непересекающимися путями.

Подобная теорема справедлива и для реберной связности. То есть из теоремы Менгера для реберной [math]k - [/math] связности следует:

Утверждение:
Граф  [math] G [/math] является реберно [math] l [/math] - связным [math]\Leftrightarrow [/math] любая пара его вершин соединена по крайней мере [math] l [/math] - реберно непересекающимися путями.

Смотри также

Литература

  • Харари Ф. Теория графов.[1] — М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)
  • Форд Л., Фалкерсон Д., Потоки в сетях, пер. с англ., М., 1966