Теорема Хватала — различия между версиями
Строка 71: | Строка 71: | ||
|statement= | |statement= | ||
Если импликация <tex> (*) </tex> верна для некоторой последовательности степеней <tex> d </tex>, то она верна и для неубывающей последовательности <tex> d' </tex>, мажорирующей <tex> d </tex>. | Если импликация <tex> (*) </tex> верна для некоторой последовательности степеней <tex> d </tex>, то она верна и для неубывающей последовательности <tex> d' </tex>, мажорирующей <tex> d </tex>. | ||
+ | |proof= | ||
+ | # Пусть <tex> d'_k > k </tex>. <tex> (\mbox{false} \rightarrow \mbox{true}) = (\mbox{false} \rightarrow \mbox{true}) = \mbox{true}. Значит, в этом случае импликация <tex> (*) </tex> верна для последовательности <tex> d' </tex>. | ||
+ | # Пусть <tex> d'_k \leq k, \mbox{ } d'_{n - k} \geq d_{n - k} \geq n - k </tex>. <tex> (\mbox{true} \rightarrow \mbox{true}) = \mbox{true} </tex>. Значит, и в этом случае импликация <tex> (*) </tex> верна для последовательности <tex> d' </tex>. | ||
+ | Значит, импликация <tex> (*) </tex> выполняется и для последовательности <tex> d' </tex>, q.e.d. | ||
}} | }} | ||
Версия 07:03, 20 ноября 2011
Определение: |
Пусть неориентированный граф имеет вершин: . Пусть и вершины графа упорядочены таким образом, что . Последовательность называют последовательностью степеней графа . |
Лемма (О добавлении ребра в граф): |
Пусть неориентированный граф получен из неориентированного графа добавлением одного нового ребра . Тогда последовательность степеней графа мажорируется последовательностью степеней графа . |
Доказательство: |
Замечание: Если в неубывающей последовательности Значит, последовательность степеней полученного графа мажорирует последовательность степеней исходного, q.e.d. увеличить на единицу число , а затем привести последовательность к неубывающему виду, переставив число на положенное место, то исходная последовательность будет мажорироваться полученной. При добавлении в граф ребра , степени вершин и увеличатся на единицу. Для доказательства леммы, дважды воспользуемся замечанием. |
Теорема (Хватал): | ||||||||||||||||||||||||
Пусть:
Тогда если | ||||||||||||||||||||||||
Доказательство: | ||||||||||||||||||||||||
Для доказательства теоремы, докажем 3 леммы.
Приведем доказательство от противного. Пусть существует граф с числом вершин , удовлетворяющий , но негамильтонов. Будем добавлять в него ребра до тех пор, пока не получим максимально возможный негамильтонов граф (то есть добавление еще одного ребра сделает граф гамильтоновым). По лемме о добавлении ребра и лемме №3 импликация остается верной для графа . Очевидно, что граф гамильтонов при . Будем считать максимальным негамильтоновым остовным подграфом графа .Выберем две несмежные вершины гамильтонов цикл графа : в нём обязательно присутствует ребро . Отбрасывая ребро , получим гамильтонову -цепь в графе : . и графа , такие что — максимально. Будем считать, что . Добавив к новое ребро , получим гамильтонов граф . РассмотримПусть .
Из определений и следует, что . Значит, .Так как , ни одна вершина не смежна с (для ). В силу выбора и , получим, что . Пусть вершин, степень которых не превосходит .По лемме №1: . В силу импликации : .По лемме №2, вершин, степень которых не меньше .Так как Значит, предположение неверно, q.e.d. , то вершина может быть смежна максимум с из этих вершин. Значит, существует вершина , не являющаяся смежной с и для которой . Тогда получим, что , что противоречит выбору и . | ||||||||||||||||||||||||
Литература
- Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы