Теорема Хватала — различия между версиями
Строка 8: | Строка 8: | ||
О добавлении ребра в граф | О добавлении ребра в граф | ||
|statement= | |statement= | ||
− | Пусть | + | Пусть неориентированный граф <tex> G' </tex> получен из неориентированного графа <tex> G </tex> добавлением одного нового ребра <tex> e </tex>. Тогда последовательность степеней графа <tex> G </tex> мажорируется последовательностью степеней графа <tex> G' </tex>. |
|proof= | |proof= | ||
''Замечание'': Если в неубывающей последовательности <tex> d_1, d_2, \ldots, d_n </tex> увеличить на единицу число <tex> d_i </tex>, а затем привести последовательность к неубывающему виду, переставив число <tex> d_i + 1 </tex> на положенное место, то исходная последовательность будет мажорироваться полученной. | ''Замечание'': Если в неубывающей последовательности <tex> d_1, d_2, \ldots, d_n </tex> увеличить на единицу число <tex> d_i </tex>, а затем привести последовательность к неубывающему виду, переставив число <tex> d_i + 1 </tex> на положенное место, то исходная последовательность будет мажорироваться полученной. | ||
Строка 20: | Строка 20: | ||
|statement= | |statement= | ||
Пусть: | Пусть: | ||
− | * <tex> G </tex> — [[ | + | * <tex> G </tex> — [[Отношение_связности,_компоненты_связности#.D0.A1.D0.BB.D1.83.D1.87.D0.B0.D0.B9_.D0.BD.D0.B5.D0.BE.D1.80.D0.B8.D0.B5.D0.BD.D1.82.D0.B8.D1.80.D0.BE.D0.B2.D0.B0.D0.BD.D0.BD.D0.BE.D0.B3.D0.BE_.D0.B3.D1.80.D0.B0.D1.84.D0.B0|связный граф]], |
* <tex> n = |VG| \geq 3 </tex> — количество вершин, | * <tex> n = |VG| \geq 3 </tex> — количество вершин, | ||
* <tex> d_1 \leq d_2 \leq \ldots \leq d_n </tex> — его последовательность степеней. | * <tex> d_1 \leq d_2 \leq \ldots \leq d_n </tex> — его последовательность степеней. | ||
Тогда если <tex> \forall k \in \mathbb N </tex> верна импликация: <br> | Тогда если <tex> \forall k \in \mathbb N </tex> верна импликация: <br> | ||
<center><tex> d_k \leq k < n/2 \rightarrow d_{n - k} \geq n - k, (*) </tex></center> | <center><tex> d_k \leq k < n/2 \rightarrow d_{n - k} \geq n - k, (*) </tex></center> | ||
− | то граф <tex> G </tex> [[ | + | то граф <tex> G </tex> [[Гамильтоновы_графы#.D0.9E.D1.81.D0.BD.D0.BE.D0.B2.D0.BD.D1.8B.D0.B5_.D0.BE.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F|гамильтонов]]. |
|proof= | |proof= | ||
Для доказательства теоремы, докажем 3 леммы. | Для доказательства теоремы, докажем 3 леммы. | ||
Строка 88: | Строка 88: | ||
Будем считать, что <tex> \deg u \leq \deg v </tex>. | Будем считать, что <tex> \deg u \leq \deg v </tex>. | ||
Добавив к <tex> G </tex> новое ребро <tex> e = uv </tex>, получим гамильтонов граф <tex> G + e </tex>. | Добавив к <tex> G </tex> новое ребро <tex> e = uv </tex>, получим гамильтонов граф <tex> G + e </tex>. | ||
− | Рассмотрим | + | Рассмотрим гамильтонов цикл графа <tex> G + e </tex>: в нём обязательно присутствует ребро <tex> e </tex>. |
Отбрасывая ребро <tex> e </tex>, получим гамильтонову <tex> (u, v) </tex>-цепь в графе <tex> G </tex>: <tex> u = u_1 \rightarrow u_2 \rightarrow \ldots \rightarrow u_n = v </tex>. | Отбрасывая ребро <tex> e </tex>, получим гамильтонову <tex> (u, v) </tex>-цепь в графе <tex> G </tex>: <tex> u = u_1 \rightarrow u_2 \rightarrow \ldots \rightarrow u_n = v </tex>. | ||
Пусть <tex> S = \{ i | e_i = u_1 u_{i + 1} \in EG\}, T = \{ i |f_i = u_i u_n \in EG\} </tex>. | Пусть <tex> S = \{ i | e_i = u_1 u_{i + 1} \in EG\}, T = \{ i |f_i = u_i u_n \in EG\} </tex>. | ||
− | {{ | + | {{Утверждение |
|statement= | |statement= | ||
− | <tex> S \cap T = \varnothing </tex> | + | <tex> S \cap T = \varnothing </tex>. |
|proof= | |proof= | ||
Пусть <tex> j \in S \cap T </tex>. Тогда получим гамильтонов цикл графа <tex> G </tex>: <tex> u_1 \rightarrow^{e_j} u_{j + 1} \rightarrow u_{j + 2} \rightarrow \ldots \rightarrow u_n \rightarrow^{f_j} u_j \rightarrow u_{j - 1} \rightarrow \ldots \rightarrow u_1 </tex>, что противоречит условию, что граф негамильтонов. Значит, <tex> S \cap T </tex>, q.e.d. | Пусть <tex> j \in S \cap T </tex>. Тогда получим гамильтонов цикл графа <tex> G </tex>: <tex> u_1 \rightarrow^{e_j} u_{j + 1} \rightarrow u_{j + 2} \rightarrow \ldots \rightarrow u_n \rightarrow^{f_j} u_j \rightarrow u_{j - 1} \rightarrow \ldots \rightarrow u_1 </tex>, что противоречит условию, что граф негамильтонов. Значит, <tex> S \cap T </tex>, q.e.d. |
Версия 07:42, 20 ноября 2011
Определение: |
Пусть неориентированный граф имеет вершин: . Пусть и вершины графа упорядочены таким образом, что . Последовательность называют последовательностью степеней графа . |
Лемма (О добавлении ребра в граф): |
Пусть неориентированный граф получен из неориентированного графа добавлением одного нового ребра . Тогда последовательность степеней графа мажорируется последовательностью степеней графа . |
Доказательство: |
Замечание: Если в неубывающей последовательности Значит, последовательность степеней полученного графа мажорирует последовательность степеней исходного, q.e.d. увеличить на единицу число , а затем привести последовательность к неубывающему виду, переставив число на положенное место, то исходная последовательность будет мажорироваться полученной. При добавлении в граф ребра , степени вершин и увеличатся на единицу. Для доказательства леммы, дважды воспользуемся замечанием. |
Теорема (Хватал): | |||||||||||||||||||||||
Пусть:
Тогда если | |||||||||||||||||||||||
Доказательство: | |||||||||||||||||||||||
Для доказательства теоремы, докажем 3 леммы.
Приведем доказательство от противного. Пусть существует граф с числом вершин , удовлетворяющий , но негамильтонов. Будем добавлять в него ребра до тех пор, пока не получим максимально возможный негамильтонов граф (то есть добавление еще одного ребра сделает граф гамильтоновым). По лемме о добавлении ребра и лемме №3 импликация остается верной для графа . Очевидно, что граф гамильтонов при . Будем считать максимальным негамильтоновым остовным подграфом графа .Выберем две несмежные вершины и графа , такие что — максимально. Будем считать, что . Добавив к новое ребро , получим гамильтонов граф . Рассмотрим гамильтонов цикл графа : в нём обязательно присутствует ребро . Отбрасывая ребро , получим гамильтонову -цепь в графе : .Пусть .
Из определений и следует, что . Значит, .Так как , ни одна вершина не смежна с (для ). В силу выбора и , получим, что . Пусть вершин, степень которых не превосходит .По лемме №1: . В силу импликации : .По лемме №2, вершин, степень которых не меньше .Так как Значит, предположение неверно, q.e.d. , то вершина может быть смежна максимум с из этих вершин. Значит, существует вершина , не являющаяся смежной с и для которой . Тогда получим, что , что противоречит выбору и . | |||||||||||||||||||||||
Литература
- Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы