Теорема Дирака — различия между версиями
Строка 1: | Строка 1: | ||
+ | {{В разработке}} | ||
+ | {{Лемма | ||
+ | |about=о длине цикла | ||
+ | |statement= Пусть <tex>G</tex> - произвольный неориентированный граф и <tex>\delta</tex> - минимальная степень его вершин. Если <tex>\delta \ge 2</tex>, то в графе <tex>G</tex> существует цикл <tex>C</tex> длиной <tex>l \ge \delta + 1</tex>. | ||
+ | |proof= | ||
+ | Рассмотрим путь максимальной длины <tex>P = v_0 v_1 .. v_s</tex>. Все смежные с <tex>v_0</tex> вершины лежат на <tex>P</tex>. Обозначим <tex>k = max\{i: v_0 v_i \in E\}</tex>. Тогда <tex>\delta \le deg v_0 \le k</tex>. Цикл <tex>C = v_0 v_1 .. v_k v_0</tex> имеет длину <tex>l = k + 1 \ge \delta + 1</tex> | ||
+ | }} | ||
+ | |||
{{Теорема | {{Теорема | ||
+ | |about=Дирак | ||
|statement= | |statement= | ||
− | + | Пусть <tex>G</tex> - неориентированный граф и <tex>\delta</tex> - минимальная степень его вершин. Если <tex>n \ge 3</tex> и <tex>\delta \ge n/2</tex>, то <tex>G</tex> - гамильтонов граф. | |
|proof= | |proof= | ||
+ | Пусть <tex>C</tex> - цикл наибольшей длины в графе <tex>G</tex>. По лемме его длина <tex>l \ge n + 1</tex>. Если <tex>C</tex> - гамильтонов, то теорема доказана. Предположим обратное, т. е. <tex></tex> | ||
+ | |||
По [[Теорема Хватала|теореме Хватала]]: для <tex>\forall k</tex> верна импликация <tex>d_k \le k < n/2 \Rightarrow d_{n-k} \ge n-k</tex>, поскольку левая её часть всегда ложна. | По [[Теорема Хватала|теореме Хватала]]: для <tex>\forall k</tex> верна импликация <tex>d_k \le k < n/2 \Rightarrow d_{n-k} \ge n-k</tex>, поскольку левая её часть всегда ложна. | ||
}} | }} |
Версия 05:02, 21 ноября 2011
Эта статья находится в разработке!
Лемма (о длине цикла): |
Пусть - произвольный неориентированный граф и - минимальная степень его вершин. Если , то в графе существует цикл длиной . |
Доказательство: |
Рассмотрим путь максимальной длины | . Все смежные с вершины лежат на . Обозначим . Тогда . Цикл имеет длину
Теорема (Дирак): |
Пусть - неориентированный граф и - минимальная степень его вершин. Если и , то - гамильтонов граф. |
Доказательство: |
Пусть По - цикл наибольшей длины в графе . По лемме его длина . Если - гамильтонов, то теорема доказана. Предположим обратное, т. е. теореме Хватала: для верна импликация , поскольку левая её часть всегда ложна. |
Источники
Харари Ф. - Теория графов. ISBN 978-5-397-00622-4