Теорема Дирака — различия между версиями
Строка 12: | Строка 12: | ||
Пусть <tex>G</tex> - неориентированный граф и <tex>\delta</tex> - минимальная степень его вершин. Если <tex>n \ge 3</tex> и <tex>\delta \ge n/2</tex>, то <tex>G</tex> - гамильтонов граф. | Пусть <tex>G</tex> - неориентированный граф и <tex>\delta</tex> - минимальная степень его вершин. Если <tex>n \ge 3</tex> и <tex>\delta \ge n/2</tex>, то <tex>G</tex> - гамильтонов граф. | ||
|proof= | |proof= | ||
− | Пусть <tex>C</tex> - цикл наибольшей длины в графе <tex>G</tex>. По лемме его длина <tex>l \ge n + 1</tex>. Если <tex>C</tex> - гамильтонов, то теорема доказана. Предположим обратное, т. е. | + | Пусть <tex>C</tex> - цикл наибольшей длины в графе <tex>G</tex>. По лемме его длина <tex>l \ge n + 1</tex>. Если <tex>C</tex> - гамильтонов, то теорема доказана. Предположим обратное, т. е....... |
По [[Теорема Хватала|теореме Хватала]]: для <tex>\forall k</tex> верна импликация <tex>d_k \le k < n/2 \Rightarrow d_{n-k} \ge n-k</tex>, поскольку левая её часть всегда ложна. | По [[Теорема Хватала|теореме Хватала]]: для <tex>\forall k</tex> верна импликация <tex>d_k \le k < n/2 \Rightarrow d_{n-k} \ge n-k</tex>, поскольку левая её часть всегда ложна. |
Версия 05:04, 21 ноября 2011
Эта статья находится в разработке!
Лемма (о длине цикла): |
Пусть - произвольный неориентированный граф и - минимальная степень его вершин. Если , то в графе существует цикл длиной . |
Доказательство: |
Рассмотрим путь максимальной длины | . Все смежные с вершины лежат на . Обозначим . Тогда . Цикл имеет длину
Теорема (Дирак): |
Пусть - неориентированный граф и - минимальная степень его вершин. Если и , то - гамильтонов граф. |
Доказательство: |
Пусть По - цикл наибольшей длины в графе . По лемме его длина . Если - гамильтонов, то теорема доказана. Предположим обратное, т. е....... теореме Хватала: для верна импликация , поскольку левая её часть всегда ложна. |
Источники
Харари Ф. - Теория графов. ISBN 978-5-397-00622-4