Дерево, эквивалентные определения — различия между версиями
(→Доказательство эквивалентности) |
|||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | '''Дерево''' — | + | '''Дерево''' — связный ациклический граф. |
}} | }} | ||
{{Определение | {{Определение |
Версия 19:47, 24 ноября 2011
Определение: |
Дерево — связный ациклический граф. |
Определение: |
Лес — граф, являющийся набором непересекающихся деревьев. |
Определения
Дерево - неориентированный простой граф G, который удовлетворяет любому из эквивалентных утверждений:
- Любые две вершины графа G соединены единственным простым путем
- G - связен и ацикличен
- G - ацикличен, и простой цикл формируется при добавлении любого ребра
- G - связен, и удаление любого ребра приводит к потере связности
Доказательство эквивалентности
Докажем эквивалентность 1 определения с остальными:
- Связность, очевидно, вытекает из существования пути между любыми двумя вершинами, а ацикличность из единственности. Повторив эти рассуждения в обратном порядке получим .
- Ацикличность получаем аналогично первому пункту. Теперь рассмотрим и такие, что ребра не существует. Между ними, как мы знаем, уже существует путь, и при добавлении нового ребра мы получим второй путь. Из существования двух различных путей вытекает существование цикла. Опять же повторив эти рассуждения в обратном порядке получим .
- Связность аналогично первому пункту. Теперь рассмотрим и такие, что ребро существует. Мы знаем, что это единственный путь из в , значит после удаления ребра станет не достижимо из и наоборот, что означает утерю связности. Опять же повторив эти рассуждения в обратном порядке получим .
Получив эквивалентность всех утверждений первому, по транзитивности автоматически получим эквивалентность остальных утверждений.
Литература
- Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
- Википедия — свободная энциклопедия