Задача коммивояжера, ДП по подмножествам — различия между версиями
Krotser (обсуждение | вклад) |
Krotser (обсуждение | вклад) |
||
| Строка 13: | Строка 13: | ||
Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе. | Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе. | ||
| − | Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе <tex> G | + | Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе <tex> G=(V,E)</tex> <tex> N </tex> |
вершин, пронумерованных от <tex>0</tex> до <tex>N-1</tex> и каждое ребро <tex>(i, j) \in E </tex> имеет некоторый вес <tex> w(i,j)</tex>. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна. | вершин, пронумерованных от <tex>0</tex> до <tex>N-1</tex> и каждое ребро <tex>(i, j) \in E </tex> имеет некоторый вес <tex> w(i,j)</tex>. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна. | ||
| − | Зафиксируем начальную вершину <tex>s</tex> и будем искать гамильтонов цикл наименьшей стоимости - путь от <tex>s</tex> до <tex>s</tex>, проходящий по всем вершинам(кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор <tex>s</tex> не имеет значения. Поэтому будем считать <tex>s = 0 </tex>. | + | Зафиксируем начальную вершину <tex>s</tex> и будем искать гамильтонов цикл наименьшей стоимости - путь от <tex>s</tex> до <tex>s</tex>, проходящий по всем вершинам (кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор <tex>s</tex> не имеет значения. Поэтому будем считать <tex>s = 0 </tex>. |
Подмножества вершин будем кодировать битовыми векторами, обозначим <tex>mask_i</tex> значение <tex>i</tex>-ого бита в векторе <tex>mask</tex>. | Подмножества вершин будем кодировать битовыми векторами, обозначим <tex>mask_i</tex> значение <tex>i</tex>-ого бита в векторе <tex>mask</tex>. | ||
| − | Обозначим <tex>d[i][mask]</tex> как наименьшую стоимость пути из вершины <tex>i</tex> в вершину <tex>0</tex>, проходящую (не считая вершины <tex>i</tex>) единожды по всем тем и только тем вершинам <tex>j</tex>, для которых <tex>mask_j = 1</tex> (т.е. <tex>mask</tex> - | + | Обозначим <tex>d[i][mask]</tex> как наименьшую стоимость пути из вершины <tex>i</tex> в вершину <tex>0</tex>, проходящую (не считая вершины <tex>i</tex>) единожды по всем тем и только тем вершинам <tex>j</tex>, для которых <tex>mask_j = 1</tex> (т.е. <tex>d[i][mask]</tex> уже найденный оптимальный путь от <tex>i</tex>-ой вершины до <tex>0</tex>-ой, проходящий через те вершины, где <tex>mask_j=1</tex>. Если <tex>mask_j=0</tex>,то эти вершины еще не посещены). |
| − | + | Начальное состояние - когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен <tex>0</tex> (т.е. <tex>i = 0</tex>, <tex>mask = 0</tex>). Для остальных состояний перебираем все возможные переходы в <tex>i</tex>-ую вершину из любой посещенной ранее и выбираем минимальный результат. Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как <tex>\infty</tex>). | |
То есть, <tex>d[i][mask]</tex> считается по следующему правилу: | То есть, <tex>d[i][mask]</tex> считается по следующему правилу: | ||
| Строка 39: | Строка 39: | ||
Стоимостью минимального гамильтонова цикла в исходном графе будет значение <tex> d[0][2^n-1]</tex> - стоимость пути из <tex>0</tex>-й вершины в <tex>0</tex>-ю, при необходимости посетить все вершины. Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени. | Стоимостью минимального гамильтонова цикла в исходном графе будет значение <tex> d[0][2^n-1]</tex> - стоимость пути из <tex>0</tex>-й вершины в <tex>0</tex>-ю, при необходимости посетить все вершины. Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени. | ||
| − | Для того, чтобы восстановить сам | + | Для того, чтобы восстановить сам путь, воспользуемся соотношением <tex> d[i][mask] = w(i, j) + d[j][mask - 2^j] </tex>, которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния <tex> i = 0 </tex>, <tex> mask = 2^n - 1</tex>, найдем вершину <tex>j</tex>, для которой выполняется указанное соотношение, добавим <tex>j</tex> в ответ, пересчитаем текущее состояние как <tex>i = j</tex>, <tex> mask = mask - 2^j </tex>. Процесс заканчивается в состоянии <tex>i = 0</tex>, <tex> mask = 0 </tex>. |
== Реализация == | == Реализация == | ||
Версия 18:27, 1 декабря 2011
Задача о коммивояжере (англ. Travelling - salesman problem, TSP) - это задача, в которой определяется кратчайший замкнутый путь, соединяющий заданное множество, которое состоит из точек на плоскости. Коммивояжер должен посетить городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей?
Содержание
Варианты решения
В теории алгоритмов NP-полная (NPC, NP-complete) задача — задача из класса NP, к которой можно свести любую другую задачу из класса NP за полиномиальное время. Таким образом, NP-полные задачи образуют в некотором смысле подмножество «самых сложных» задач в классе NP; и если для какой-то из них будет найден «быстрый» алгоритм решения, то и любая другая задача из класса NP может быть решена так же «быстро». Cтатус NP-полных задач пока что неизвестен. Для их решения до настоящего времени не разработано алгоритмов с полиномиальным временем работы, но и не доказано, что для какой-то из них алгоритмов не существует. Этот так называемый вопрос PNP с момента своей постановки в 1971 году стал одним из самых трудных в теории вычислительных систем.
Так вот задача о коммивояжере относится к классу NP-полных задач. Рассмотрим два варианта решения.
Перебор перестановок
Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших . Сложность алгоритма .
Динамическое программирование по подмножествам (по маскам)
Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе.
Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе вершин, пронумерованных от до и каждое ребро имеет некоторый вес . Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.
Зафиксируем начальную вершину и будем искать гамильтонов цикл наименьшей стоимости - путь от до , проходящий по всем вершинам (кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор не имеет значения. Поэтому будем считать .
Подмножества вершин будем кодировать битовыми векторами, обозначим значение -ого бита в векторе .
Обозначим как наименьшую стоимость пути из вершины в вершину , проходящую (не считая вершины ) единожды по всем тем и только тем вершинам , для которых (т.е. уже найденный оптимальный путь от -ой вершины до -ой, проходящий через те вершины, где . Если ,то эти вершины еще не посещены).
Начальное состояние - когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен (т.е. , ). Для остальных состояний перебираем все возможные переходы в -ую вершину из любой посещенной ранее и выбираем минимальный результат. Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как ).
То есть, считается по следующему правилу:
где, и, или, множество возможных переходов пусто.
Стоимостью минимального гамильтонова цикла в исходном графе будет значение - стоимость пути из -й вершины в -ю, при необходимости посетить все вершины. Данное решение требует памяти и времени.
Для того, чтобы восстановить сам путь, воспользуемся соотношением , которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния , , найдем вершину , для которой выполняется указанное соотношение, добавим в ответ, пересчитаем текущее состояние как , . Процесс заканчивается в состоянии , .
Реализация
//Все переменные используются из описания алгоритма, inf = бесконечность
d[0][0] = 0;
for i = 0 to n - 1
for mask = 0 to mask = 2 ** n - 1
for j = 0 to n - 1
if j-ий бит mask == 1
if w(i, j) существует
d[i][mask] = min(d[i][mask], d[j][mask - 2 ** n] + w(i, j);
else
d[i][mask] = inf;
print d[0][2 ** n - 1];
Ссылки
Литература
- Романовский И. В. Дискретный анализ. СПб.: Невский Диалект; БХВ-Петербург, 2003. ISBN 5-7940-0114-3
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4