Теорема Хватала — различия между версиями
Строка 105: | Строка 105: | ||
Из определений <tex> S </tex> и <tex> T </tex> следует, что <tex> S \cup T \subseteq \{1, 2, ..., n - 1 \} \Rightarrow 2 \deg u \leq \deg u + \deg v = |S| + |T| = |S \cup T| < n </tex>. Значит, <tex> \deg u < n/2 </tex>. | Из определений <tex> S </tex> и <tex> T </tex> следует, что <tex> S \cup T \subseteq \{1, 2, ..., n - 1 \} \Rightarrow 2 \deg u \leq \deg u + \deg v = |S| + |T| = |S \cup T| < n </tex>. Значит, <tex> \deg u < n/2 </tex>. | ||
− | Так как <tex> S \cap T = \emptyset </tex>, ни одна вершина <tex> u_j </tex> не смежна с <tex> v = u_n </tex> (для <tex> j \in S </tex>). В силу выбора <tex> u </tex> и <tex> v </tex>, получим, что <tex> \deg u_j \leq \deg u </tex>. Пусть <tex> k = \deg u = |S| </tex>. Значит, <tex> \exists | + | Так как <tex> S \cap T = \emptyset </tex>, ни одна вершина <tex> u_j </tex> не смежна с <tex> v = u_n </tex> (для <tex> j \in S </tex>). В силу выбора <tex> u </tex> и <tex> v </tex>, получим, что <tex> \deg u_j \leq \deg u </tex>. Пусть <tex> k = \deg u = |S| </tex>. Значит, <tex> \exists k </tex> вершин, степень которых не превосходит <tex> k </tex>. |
По лемме №1: <tex> d_k \leq k < n/2 </tex>. В силу импликации <tex> (*) </tex>: <tex> d_{n - k} \geq n - k </tex>. | По лемме №1: <tex> d_k \leq k < n/2 </tex>. В силу импликации <tex> (*) </tex>: <tex> d_{n - k} \geq n - k </tex>. |
Версия 19:34, 7 декабря 2011
Определение: |
Пусть неориентированный граф имеет вершин: . Пусть и вершины графа упорядочены таким образом, что . Последовательность называют последовательностью степеней графа . |
Лемма (О добавлении ребра в граф): |
Пусть неориентированный граф получен из неориентированного графа добавлением одного нового ребра . Тогда последовательность степеней графа мажорируется последовательностью степеней графа . |
Доказательство: |
Замечание: Если в неубывающей последовательности увеличить на единицу число , а затем привести последовательность к неубывающему виду, переставив число на положенное место , то исходная последовательность будет мажорироваться полученной.
При добавлении в граф ребра Значит, последовательность степеней полученного графа мажорирует последовательность степеней исходного, q.e.d. , степени вершин и увеличатся на единицу. Для доказательства леммы, дважды воспользуемся замечанием. |
Теорема (Хватал): | |||||||||||||||||||||||
Пусть:
Тогда если | |||||||||||||||||||||||
Доказательство: | |||||||||||||||||||||||
Для доказательства теоремы, докажем 3 леммы.
Приведем доказательство от противного. Пусть существует граф с числом вершин , удовлетворяющий , но негамильтонов. Будем добавлять в него ребра до тех пор, пока не получим максимально возможный негамильтонов граф (то есть добавление еще одного ребра сделает граф гамильтоновым). По лемме о добавлении ребра и лемме №3 импликация остается верной для графа . Очевидно, что граф гамильтонов при . Будем считать максимальным негамильтоновым остовным подграфом графа .Выберем две несмежные вершины и графа , такие что — максимально. Будем считать, что . Добавив к новое ребро , получим гамильтонов граф . Рассмотрим гамильтонов цикл графа : в нём обязательно присутствует ребро . Отбрасывая ребро , получим гамильтонову -цепь в графе : .Пусть .
Из определений и следует, что . Значит, .Так как , ни одна вершина не смежна с (для ). В силу выбора и , получим, что . Пусть . Значит, вершин, степень которых не превосходит .По лемме №1: . В силу импликации : .По лемме №2, вершин, степень которых не меньше .Так как Значит, предположение неверно, q.e.d. , то вершина может быть смежна максимум с из этих вершин. Значит, существует вершина , не являющаяся смежной с и для которой . Тогда получим, что , что противоречит выбору и . | |||||||||||||||||||||||
Литература
- Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы