Теорема Хватала — различия между версиями
Строка 12: | Строка 12: | ||
''Замечание'': Если в неубывающей последовательности <tex> d_1, d_2, \ldots, d_n </tex> увеличить на единицу число <tex> d_i </tex>, а затем привести последовательность к неубывающему виду, переставив число <tex> d_i + 1 </tex> на положенное место <tex> j </tex>, то исходная последовательность будет мажорироваться полученной. | ''Замечание'': Если в неубывающей последовательности <tex> d_1, d_2, \ldots, d_n </tex> увеличить на единицу число <tex> d_i </tex>, а затем привести последовательность к неубывающему виду, переставив число <tex> d_i + 1 </tex> на положенное место <tex> j </tex>, то исходная последовательность будет мажорироваться полученной. | ||
* Рассмотрим элементы с номерами <tex> s = \overline{1, i - 1} </tex>. Они не изменились, следовательно мажорируются собой. | * Рассмотрим элементы с номерами <tex> s = \overline{1, i - 1} </tex>. Они не изменились, следовательно мажорируются собой. | ||
− | * Рассмотрим элементы с номерами <tex> s = \overline{i, j - 1} </tex>. <tex> s </tex>-й элемент полученной последовательности равен <tex> s + 1 </tex>-му элементу исходной. <tex> d_s \leq d_{s + 1} \Rightarrow d_s \leq d'_s = | + | * Рассмотрим элементы с номерами <tex> s = \overline{i, j - 1} </tex>. <tex> s </tex>-й элемент полученной последовательности равен <tex> s + 1 </tex>-му элементу исходной. <tex> d_s \leq d_{s + 1} \Rightarrow d_s \leq d'_s = d_{s + 1} </tex>. |
* Рассмотрим элементы с номерами <tex> s = \overline{j + 1, n} </tex>. Они не изменились, следовательно мажорируются собой. | * Рассмотрим элементы с номерами <tex> s = \overline{j + 1, n} </tex>. Они не изменились, следовательно мажорируются собой. | ||
При добавлении в граф ребра <tex> e = uv, \mbox{ } (u \neq v) </tex>, степени вершин <tex> u </tex> и <tex> v </tex> увеличатся на единицу. Для доказательства леммы, дважды воспользуемся замечанием. | При добавлении в граф ребра <tex> e = uv, \mbox{ } (u \neq v) </tex>, степени вершин <tex> u </tex> и <tex> v </tex> увеличатся на единицу. Для доказательства леммы, дважды воспользуемся замечанием. |
Версия 07:05, 8 декабря 2011
Определение: |
Пусть неориентированный граф имеет вершин: . Пусть и вершины графа упорядочены таким образом, что . Последовательность называют последовательностью степеней графа . |
Лемма (О добавлении ребра в граф): |
Пусть неориентированный граф получен из неориентированного графа добавлением одного нового ребра . Тогда последовательность степеней графа мажорируется последовательностью степеней графа . |
Доказательство: |
Замечание: Если в неубывающей последовательности увеличить на единицу число , а затем привести последовательность к неубывающему виду, переставив число на положенное место , то исходная последовательность будет мажорироваться полученной.
При добавлении в граф ребра Значит, последовательность степеней полученного графа мажорирует последовательность степеней исходного, q.e.d. , степени вершин и увеличатся на единицу. Для доказательства леммы, дважды воспользуемся замечанием. |
Теорема (Хватал): | |||||||||||||||||||||||
Пусть:
Тогда если | |||||||||||||||||||||||
Доказательство: | |||||||||||||||||||||||
Для доказательства теоремы, докажем 3 леммы.
Приведем доказательство от противного. Пусть существует граф с числом вершин , удовлетворяющий , но негамильтонов. Будем добавлять в него ребра до тех пор, пока не получим максимально возможный негамильтонов граф (то есть добавление еще одного ребра сделает граф гамильтоновым). По лемме о добавлении ребра и лемме №3 импликация остается верной для графа . Очевидно, что граф гамильтонов при . Будем считать максимальным негамильтоновым остовным подграфом графа .Выберем две несмежные вершины и графа , такие что — максимально. Будем считать, что . Добавив к новое ребро , получим гамильтонов граф . Рассмотрим гамильтонов цикл графа : в нём обязательно присутствует ребро . Отбрасывая ребро , получим гамильтонову -цепь в графе : .Пусть .
Из определений и следует, что . Значит, .Так как , ни одна вершина не смежна с (для ). В силу выбора и , получим, что . Пусть . Значит, вершин, степень которых не превосходит .По лемме №1: . В силу импликации : .По лемме №2, вершин, степень которых не меньше .Так как Значит, предположение неверно, q.e.d. , то вершина может быть смежна максимум с из этих вершин. Значит, существует вершина , не являющаяся смежной с и для которой . Тогда получим, что , что противоречит выбору и . | |||||||||||||||||||||||
Литература
- Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы