Теорема о поглощении — различия между версиями
Whiplash (обсуждение | вклад) |
Whiplash (обсуждение | вклад) |
||
Строка 41: | Строка 41: | ||
Следовательно нам надо доказать, что <tex>Q^n \xrightarrow{} 0</tex>, при <tex> n\xrightarrow{}+\infty</tex> | Следовательно нам надо доказать, что <tex>Q^n \xrightarrow{} 0</tex>, при <tex> n\xrightarrow{}+\infty</tex> | ||
− | Рассмотрим путь из i-го состояния в поглощающее, равное <tex>m_i</tex>. Пусть <tex>p<1</tex> - вероятность того, что через <tex>m_i</tex> шагов из шага i не попадет в поглощающее состояние. | + | Рассмотрим путь из i-го состояния в поглощающее, равное <tex>m_i</tex>. Пусть <tex>p<1</tex> - вероятность того, что через <tex>m_i</tex> шагов из шага <tex>i</tex> не попадет в поглощающее состояние. |
Пусть <tex>m = max(m_i)</tex>, а <tex>p = max(p_i)< 1</tex> | Пусть <tex>m = max(m_i)</tex>, а <tex>p = max(p_i)< 1</tex> | ||
Версия 23:44, 9 декабря 2011
Теорема (о поглощении): |
С вероятностью, равной , марковская цепь перейдет в поглощающее состояние, если у нее существует такое состояние. |
Доказательство: |
Пусть - матрица переходов, где элемент равен вероятности перехода из -го состояния в -ое. Она будет выглядеть как матрица из 4-х блоков, где - несущественные состояния, а и - существенные (т.к. цепь поглощающая, то из любого несущественного можно попасть в существенное). - единичная матрица.
Пусть вектор - вектор вероятности нахождения на шаге . Он вычисляется, как произведение вектора на нулевом шаге на матрицу перехода в степени . Рассмотрим, что представляет из себя возведение матрицы в степень:для : .Отсюда видно, что имеет такой вид: , где - некоторые значения.Следовательно нам надо доказать, что , приРассмотрим путь из i-го состояния в поглощающее, равное . Пусть - вероятность того, что через шагов из шага не попадет в поглощающее состояние. Пусть , аТогда получаем: В итоге получаем, что несущественные состояния стремятся к , а значит существенные в итоге приходят к , т.е. цепь приходит в поглощающее состояние. |