Ковариация случайных величин — различия между версиями
Rukin (обсуждение | вклад) (→Свойства ковариации) |
Rukin (обсуждение | вклад) (→Свойства ковариации) |
||
Строка 27: | Строка 27: | ||
Обратное, вообще говоря, неверно. | Обратное, вообще говоря, неверно. | ||
* Неравенство Коши — Буняковского: | * Неравенство Коши — Буняковского: | ||
− | : если принять в качестве скалярного произведения двух случайных величин ковариацию <tex>\langle \eta, \xi \rangle = Cov (\eta, \xi)</tex>, то квадрат нормы случайной величины будет равен дисперсии <tex> ||\eta||^2 = D [ \eta ] </tex> | + | : если принять в качестве скалярного произведения двух случайных величин ковариацию <tex>\langle \eta, \xi \rangle = Cov (\eta, \xi)</tex>, то квадрат нормы случайной величины будет равен дисперсии <tex> ||\eta||^2 = D [ \eta ], </tex> и Неравенство Коши-Буняковского запишется в виде: |
:: <tex>Cov^2(\eta,\xi) \leq \mathrm{D}[\eta] \cdot \mathrm{D}[\xi]</tex>. | :: <tex>Cov^2(\eta,\xi) \leq \mathrm{D}[\eta] \cdot \mathrm{D}[\xi]</tex>. | ||
Версия 10:59, 15 декабря 2011
Определение: |
Ковариация случайных величин — мера линейной зависимости случайных величин. |
Вычисление
Обозначается как случайные величины.
, где -В силу линейности математического ожидания, ковариация может быть записана как:
Итого,
Свойства ковариации
- Ковариация симметрична:
- .
- Пусть случайные величины, а их две произвольные линейные комбинации. Тогда
- .
- Ковариация случайной величины с собой равна её дисперсии:
- .
- Если независимые случайные величины, то
- .
Обратное, вообще говоря, неверно.
- Неравенство Коши — Буняковского:
- если принять в качестве скалярного произведения двух случайных величин ковариацию
- .
, то квадрат нормы случайной величины будет равен дисперсии и Неравенство Коши-Буняковского запишется в виде: