Эргодическая марковская цепь — различия между версиями
Whiplash (обсуждение | вклад)  | 
				Whiplash (обсуждение | вклад)   | 
				||
| Строка 46: | Строка 46: | ||
#  | #  | ||
#  | #  | ||
| − | #  | + | # Если <tex>d(j) = 1</tex>, то состояние j называется '''апериодическим''' <tex>(d(j) = \gcd \left(n \in \mathbb{N} \mid p_{jj}^{(n)} > 0 \right)</tex>, где <tex>gcd</tex>  обозначает наибольший общий делитель, называется периодом состояния <tex>j</tex>, <tex>p_{jj}^{(n)}</tex> матрица переходных вероятностей за <tex>n</tex> шагов<tex>)</tex>.  | 
==Ссылки==  | ==Ссылки==  | ||
Версия 08:17, 24 декабря 2011
| Определение: | 
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) , такое что  и
  | 
Марковскую цепь обладающую следующими свойствами называют слабо эргодическиой, если она обладает следующими свойствами:
- Для любых двух различных вершин графа переходов найдется такая вершина графа («общий сток»), что существуют ориентированные пути от вершины к вершине и от вершины к вершине . Замечание: возможен случай или ; в этом случае тривиальный (пустой) путь от к или от к также считается ориентированным путем.
 - Нулевое собственное число матрицы интенсивности невырождено.
 - При матрица переходных вероятностей стремится к матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).
 
Содержание
Основная теорема об эргодических распределениях
| Теорема (Основная теорема об эргодических распределениях): | 
Пусть  - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей . Тогда эта цепь является эргодической тогда и только тогда, когда она
 
 Эргодическое распределение тогда является единственным решением системы: 
  | 
Пример
Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Рассмотрим матрицу, следующего вида: .
Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение , такое что .
См. также
Примечания
- Общий сток - такая вершина графа, что для любых двух различных вершин графа переходов , существуют ориентированные пути от вершины к вершине и от вершины к вершине .
 - Ориентированный граф называется слабо-связным, если является связным неориентированный граф, полученный из него заменой ориентированных рёбер неориентированными.
 - Ориентированный граф называется сильно-связным, если в нём существует (ориентированный) путь из любой вершины в любую другую, или, что эквивалентно, граф содержит ровно одну сильно связную компоненту.
 - Если , то состояние j называется апериодическим , где обозначает наибольший общий делитель, называется периодом состояния , матрица переходных вероятностей за шагов.
 
Ссылки
Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"