Венгерский алгоритм решения задачи о назначениях — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(бета-версия)
м
Строка 5: Строка 5:
 
Пусть дан взвешенный полный двудольный граф <tex> K_{n, n} </tex>, нужно найти в нем полное паросочетание минимального веса. Вес паросочетания определяется как сумма весов его ребер.
 
Пусть дан взвешенный полный двудольный граф <tex> K_{n, n} </tex>, нужно найти в нем полное паросочетание минимального веса. Вес паросочетания определяется как сумма весов его ребер.
  
 
+
== Некоторые полезные утверждения ==
== Некоторые полезные соображения ==
 
  
 
{{Лемма
 
{{Лемма

Версия 02:55, 5 января 2012

Венгерский алгоритм, придуманный Х. Куном в 1955 году, решает задачу о назначениях за [math] O(n^3) [/math] операций.

Постановка задачи

Пусть дан взвешенный полный двудольный граф [math] K_{n, n} [/math], нужно найти в нем полное паросочетание минимального веса. Вес паросочетания определяется как сумма весов его ребер.

Некоторые полезные утверждения

Лемма:
Если веса всех ребер графа, инцидентных какой-либо вершине, изменить на одно и то же число, то в новом графе оптимальное паросочетание будет состоять из тех же ребер, что и в старом.
Доказательство:
[math]\triangleright[/math]
Полное паросочетание для каждой вершины содержит ровно одно ребро, инцидентное этой вершине. При изменении весов всех ребер, инцидентных ей, на одно и то же число, выбранное ребро останется оптимальным.
[math]\triangleleft[/math]

Далее будем рассматривать только графы с неотрицательной весовой функцией, так как, согласно этой лемме, задачу о назначениях на остальных графах можно свести к задаче о назначениях на них.

Лемма:
Выделим в множествах [math]X[/math] и [math]Y[/math] подмножества [math]X', Y'[/math]. Если прибавить ко всем весам ребер, инцидентных вершинам из [math]X[/math], прибавить, а потом от всех весов ребер, инцидентных вершинам из [math]Y[/math], отнять [math]d = \min \{c(x, y)|x \in X', y \in Y\backslash Y'\}[/math], то:
  1. веса всех ребер графа останутся неотрицательными;
  2. Веса ребер вида [math]xy[/math], где [math]x \in X', y \in Y'[/math] или [math]x \in X \backslash X', y \in Y \backslash Y'[/math], не изменятся.
Доказательство:
[math]\triangleright[/math]

Рассмотрим матрицу весов графа. Не умаляя общности, можно сказать, что множества [math] X' [/math] и [math] Y' [/math] состоят из первых элементов множеств [math] X [/math] и [math] Y [/math] соответственно (мы упорядочиваем множества по номерам вершин). Тогда вся матрица делится на 4 блока:

[math] X' [/math] [math] X \backslash X' [/math]
[math] Y' [/math] [math] A + d - d [/math] [math] B - d [/math]
[math] Y \backslash Y' [/math] [math] C + d [/math] [math] D [/math]
Веса группы [math] A [/math] будут сначала увеличены, а потом уменьшены на [math] d [/math], поэтому они не изменятся, веса группы [math] D [/math] вообще изменяться не будут. Все веса группы [math] B [/math] будут уменьшены на [math] d [/math], но [math] d [/math] - минимум среди этих весов, поэтому они останутся неотрицательными.
[math]\triangleleft[/math]
Лемма:
Если веса всех ребер графа неотрицательны и некоторое полное паросочетание состоит из ребер нулевого веса, то оно является оптимальным.
Доказательство:
[math]\triangleright[/math]
Действительно, паросочетание с какими-то другими весами ребер имеет больший вес и оптимальным не является.
[math]\triangleleft[/math]

Алгоритм

Доказанные ранее утверждения позволяют придумать схему алгоритма, решающего задачу о назначениях: нужно найти полное паросочетание из ребер нулевого веса в графе, полученном из исходного преобразованиями, описанными в первых двух леммах.

Алгоритм, решающий задачу, работает с графом, как с матрицей весов.

  1. Вычитаем из каждой строки значение ее минимального элемента. Теперь в каждой строке есть хотя бы один нулевой элемент.
  2. Вычитаем из каждого столбца значение его минимального элемента. Теперь в каждом столбце есть хотя бы один нулевой элемент.
  3. Ищем в текущем графе полное паросочетание из ребер нулевого веса:
    1. Если оно найдено, то желаемый результат достигнут, алгоритм закончен.
    2. В противном случае, покроем нули матрицы весов минимальным количеством строк и столбцов (это не что иное, как нахождение минимального контролирующего множества в двудольном графе). Теперь применим преобразование из леммы 2, взяв в качестве [math] X' [/math] и [math] Y' [/math] вершины левой и правой долей минимального контролирующего множества. Очевидно, после его выполнения в матрице весов появится новый нуль. После этого перейдем к шагу 1.

Анализ времени работы

Поиск максимального паросочетания или минимального контролирующего множества в двудольном графе совершается за [math] O(n^2) [/math] операций. При каждом повторении шагов 1-3 в матрице весов появляется новый нуль, который увеличивает размер максимального паросочетания хотя бы на 1, поэтому всего будет совершено [math] O(n) [/math] итераций внешнего цикла. Поэтому суммарная асимптотика работы данного алгоритма - [math] O(n^3) [/math].

Ссылки

Литература

  • Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — 2010, 368 стр.