Мера на полукольце множеств — различия между версиями
Rybak (обсуждение | вклад) м |
Rybak (обсуждение | вклад) м |
||
Строка 5: | Строка 5: | ||
Пусть <tex> (X, \mathcal R) </tex> — полукольцо. <tex> m: \mathcal R \rightarrow \overline{\mathbb R}_{+}</tex> называется '''мерой''' на нем, если: | Пусть <tex> (X, \mathcal R) </tex> — полукольцо. <tex> m: \mathcal R \rightarrow \overline{\mathbb R}_{+}</tex> называется '''мерой''' на нем, если: | ||
− | + | # <tex> m(\varnothing) = 0 </tex> | |
− | + | # Для дизъюнктных <tex> A_1, A_2, \ldots, A_n, \ldots \in \mathcal R </tex> и <tex> A \in \mathcal R </tex>, такого, что <tex> A = \bigcup\limits_{n} A_n </tex>, <tex> m(A) = \sum\limits_n m(A_n) </tex> (сигма-аддитивность) | |
− | |||
}} | }} | ||
Строка 14: | Строка 13: | ||
* <tex> \mathcal R = 2^X, m(\varnothing) = 0, m(A) = +\infty </tex> (патологический) | * <tex> \mathcal R = 2^X, m(\varnothing) = 0, m(A) = +\infty </tex> (патологический) | ||
− | * <tex> X = \mathbb N, \mathcal R = 2^X, m(X) = \sum\limits_{n=1}^{+\infty} | + | * <tex> X = \mathbb N, \mathcal R = 2^X, m(X) = \sum\limits_{n=1}^{+\infty} P_n </tex> — сходящийся положительный ряд, <tex> m(\varnothing) = 0 </tex>, для <tex> A = \{i_1, i_2, \ldots, i_n\ldots\} </tex> (множество может быть конечным) полагаем <tex> m(A) = \sum\limits_{k \in A} P_k </tex> |
* Для полукольца ячеек примером меры является <tex> m(A) = b - a </tex>, где <tex> A = [a; b) </tex> — длина ячейки. То, что длина ячейки является корректно определенной мерой — нетривиальный факт, который будет доказан нами позднее. | * Для полукольца ячеек примером меры является <tex> m(A) = b - a </tex>, где <tex> A = [a; b) </tex> — длина ячейки. То, что длина ячейки является корректно определенной мерой — нетривиальный факт, который будет доказан нами позднее. | ||
<!-- а мы это доказали позднее? --> | <!-- а мы это доказали позднее? --> | ||
− | Выведем | + | Выведем два важных свойства меры на полукольце: |
{{Лемма | {{Лемма |
Версия 00:43, 6 января 2012
Определение: |
Пусть
| — полукольцо. называется мерой на нем, если:
Примеры мер:
- (патологический)
- — сходящийся положительный ряд, , для (множество может быть конечным) полагаем
- Для полукольца ячеек примером меры является , где — длина ячейки. То, что длина ячейки является корректно определенной мерой — нетривиальный факт, который будет доказан нами позднее.
Выведем два важных свойства меры на полукольце:
Лемма: |
Пусть — мера на полукольце , тогда:
1) Для 2) Для и дизъюнктных выполняется и дизъюнктных выполняется (сигма-полуаддитивность) |
Доказательство: |
1) Пусть , тогда .По сигма-аддитивности меры, .Так как второе слагаемое неотрицательно, то . Устремляя к бесконечности, получаем требуемое.2) Можно представить Разобьем множества , каждое из пересечений принадлежит , поэтому , отсюда . на группы, так чтобы в группе с номером были дизъюнктные множества, объединение которых является подмножеством . Для каждой такой группы, мера объединения ограничена по пункту 1) мерой , поэтому получаем . |
Заметим, что если
, то , это свойство называется монотоностью меры.