Условная вероятность — различия между версиями
Gromak (обсуждение | вклад) м |
|||
Строка 5: | Строка 5: | ||
|definition = | |definition = | ||
'''Условной вероятностью''' события A при условии, что произошло событие B, называется число | '''Условной вероятностью''' события A при условии, что произошло событие B, называется число | ||
− | <tex>{P}(A \mid B) = </tex> <tex | + | <tex>{P}(A \mid B) = </tex> <tex>\frac{{P}(A\cap B)}{{P}(B)}</tex>, где <tex>A, B \subset \Omega</tex>.}} |
== Замечания == | == Замечания == | ||
− | * Если <tex | + | * Если <tex>{P}(B) = 0</tex>, то изложенное определение условной вероятности неприменимо. |
* Прямо из определения очевидно следует, что вероятность произведения двух событий равна: | * Прямо из определения очевидно следует, что вероятность произведения двух событий равна: | ||
− | : <tex | + | : <tex>{P}(A\cap B) = {P}(A \mid B) {P}(B)</tex>. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Пример == | == Пример == | ||
Строка 42: | Строка 18: | ||
Обозначим за <tex>A</tex> событие "достали чёрный шар" и за <tex>B</tex> событие "достали шар с чётным номером". Тогда <tex>P(B) = \frac{1}{2}</tex>, т. к. ровно половина шариков имеют чётный номер, а <tex>P(A \cap B) = \frac{2}{12} = \frac{1}{6}</tex>, т. к. только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно. | Обозначим за <tex>A</tex> событие "достали чёрный шар" и за <tex>B</tex> событие "достали шар с чётным номером". Тогда <tex>P(B) = \frac{1}{2}</tex>, т. к. ровно половина шариков имеют чётный номер, а <tex>P(A \cap B) = \frac{2}{12} = \frac{1}{6}</tex>, т. к. только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно. | ||
− | Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна <tex | + | Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна <tex>{P}(A \mid B) = \frac{{P}(A\cap B)}{{P}(B)} = \frac{1}{3}</tex> |
==См. также== | ==См. также== |
Версия 10:04, 12 января 2012
Содержание
Определение
Пусть задано вероятностное пространство .
Определение: |
Условной вероятностью события A при условии, что произошло событие B, называется число | , где .
Замечания
- Если , то изложенное определение условной вероятности неприменимо.
- Прямо из определения очевидно следует, что вероятность произведения двух событий равна:
- .
Пример
Пусть имеется 12 шариков, из которых 5 — чёрные, а 7 — белые. Пронумеруем чёрные шарики числами от 1 до 5, а белые — от 6 до 12. Случайным образом из мешка достаётся шарик. Требуется посчитать вероятность того, что шарик чёрный, если известно, что он имеет чётный номер.
Обозначим за
событие "достали чёрный шар" и за событие "достали шар с чётным номером". Тогда , т. к. ровно половина шариков имеют чётный номер, а , т. к. только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно.Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна
См. также
Источники
- http://ru.wikipedia.org/wiki/Условная_вероятность
- Пратусевич М.Я., Столбов К.М., Головин А.Н. Алгебра и начала математического анализа, стр. 284.