Условная вероятность — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 5: Строка 5:
 
|definition =
 
|definition =
 
'''Условной вероятностью''' события A при условии, что произошло событие B, называется число
 
'''Условной вероятностью''' события A при условии, что произошло событие B, называется число
<tex>{P}(A \mid B) = </tex> <tex dpi = "140">\frac{{P}(A\cap B)}{{P}(B)}</tex>, где <tex dpi = "140">A, B \subset \Omega</tex>.}}
+
<tex>{P}(A \mid B) = </tex> <tex>\frac{{P}(A\cap B)}{{P}(B)}</tex>, где <tex>A, B \subset \Omega</tex>.}}
 
== Замечания ==
 
== Замечания ==
  
* Если <tex dpi = "140">{P}(B) = 0</tex>, то изложенное определение условной вероятности неприменимо.
+
* Если <tex>{P}(B) = 0</tex>, то изложенное определение условной вероятности неприменимо.
 
* Прямо из определения очевидно следует, что вероятность произведения двух событий равна:
 
* Прямо из определения очевидно следует, что вероятность произведения двух событий равна:
: <tex dpi = "140">{P}(A\cap B) = {P}(A \mid B) {P}(B)</tex>.
+
: <tex>{P}(A\cap B) = {P}(A \mid B) {P}(B)</tex>.
* Условная вероятность является вероятностью, то есть функция <tex>{Q_B}</tex>, заданная формулой
 
: <tex dpi = "140">{Q_B}(A) = {P}(A \mid B ) </tex>,
 
удовлетворяет всем аксиомам вероятностной меры:
 
 
 
1) <tex dpi = "140">{Q_B}(\oslash)= 0</tex>
 
 
 
2) <tex dpi = "140">{Q_B}(\Omega) = 1</tex>
 
 
 
3) <tex dpi = "140">\forall A \subset \Omega \enskip {Q_B}(A) \geq 0</tex>
 
 
 
4) Если события <tex dpi = "140">A_1, A_2, ... A_n</tex> не пересекаются, то <tex dpi = "140">{Q_B}(A_1 \cup A_2 \cup ... \cup A_n) = {Q_B}(A_1) + {Q_B}(A_2) + ... +  {Q_B}(A_n)</tex>
 
 
 
Доказательства:
 
 
 
1) <tex dpi = "140">{Q_B}(\oslash) = \frac{P(\oslash \cap B)}{P(B)} =  \frac{P(\oslash)}{P(B)} = 0</tex>
 
 
 
2) <tex dpi = "140">{Q_B}(\Omega) = \sum\limits_{\omega \in \Omega}^{}\frac{P(\omega \cap B)}{P(B)} = \sum\limits_{\omega \in B}^{}\frac{P(\omega \cap B)}{P(B)} + \sum\limits_{\omega \in \Omega \setminus B}^{}\frac{P(\omega \cap B)}{P(B)} =
 
\frac{P(B)}{P(B)} + \frac{P(\oslash)}{P(B)} = 1</tex>
 
 
 
3) <tex dpi = "140">\forall A \subset \Omega \enskip {Q_B}(A) = \frac{P(A \cap B)}{P(B)} \geq 0</tex>, т. к. <tex dpi = "140">P(A \cap B) \geq 0</tex> и <tex dpi = "140">P(B) \geq 0</tex>
 
 
 
4) Пусть события <tex dpi = "140">A_1, A_2, ... A_n</tex> не пересекаются. Тогда: <tex dpi = "140">{Q_B}(A_1 \cup A_2 \cup ... \cup A_n) = \frac{P((A_1 \cup A_2 \cup ... \cup A_n) \cap B)}{P(B)} = \frac{P((A_1 \cap B) \cup (A_2 \cap B) \cup ... \cup (A_n \cap B))}{P(B)} = </tex>
 
 
 
<tex dpi = "140"> = \frac{P(A_1 \cap B) + P(A_2 \cap B) + ... + P(A_n \cap B))}{P(B)} = {Q_B}(A_1) + {Q_B}(A_2) + ... +  {Q_B}(A_n)</tex>
 
  
 
== Пример ==
 
== Пример ==
Строка 42: Строка 18:
 
Обозначим за <tex>A</tex> событие "достали чёрный шар" и за <tex>B</tex> событие "достали шар с чётным номером". Тогда <tex>P(B) = \frac{1}{2}</tex>, т. к. ровно половина шариков имеют чётный номер, а <tex>P(A \cap B) = \frac{2}{12} = \frac{1}{6}</tex>, т. к. только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно.
 
Обозначим за <tex>A</tex> событие "достали чёрный шар" и за <tex>B</tex> событие "достали шар с чётным номером". Тогда <tex>P(B) = \frac{1}{2}</tex>, т. к. ровно половина шариков имеют чётный номер, а <tex>P(A \cap B) = \frac{2}{12} = \frac{1}{6}</tex>, т. к. только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно.
  
Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна <tex dpi = "140">{P}(A \mid B) = \frac{{P}(A\cap B)}{{P}(B)} = \frac{1}{3}</tex>
+
Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна <tex>{P}(A \mid B) = \frac{{P}(A\cap B)}{{P}(B)} = \frac{1}{3}</tex>
  
 
==См. также==
 
==См. также==

Версия 10:04, 12 января 2012

Определение

Пусть задано вероятностное пространство [math](\Omega, P)[/math].

Определение:
Условной вероятностью события A при условии, что произошло событие B, называется число [math]{P}(A \mid B) = [/math] [math]\frac{{P}(A\cap B)}{{P}(B)}[/math], где [math]A, B \subset \Omega[/math].

Замечания

  • Если [math]{P}(B) = 0[/math], то изложенное определение условной вероятности неприменимо.
  • Прямо из определения очевидно следует, что вероятность произведения двух событий равна:
[math]{P}(A\cap B) = {P}(A \mid B) {P}(B)[/math].

Пример

Пусть имеется 12 шариков, из которых 5 — чёрные, а 7 — белые. Пронумеруем чёрные шарики числами от 1 до 5, а белые — от 6 до 12. Случайным образом из мешка достаётся шарик. Требуется посчитать вероятность того, что шарик чёрный, если известно, что он имеет чётный номер.

Обозначим за [math]A[/math] событие "достали чёрный шар" и за [math]B[/math] событие "достали шар с чётным номером". Тогда [math]P(B) = \frac{1}{2}[/math], т. к. ровно половина шариков имеют чётный номер, а [math]P(A \cap B) = \frac{2}{12} = \frac{1}{6}[/math], т. к. только два шарика из двенадцати являются чёрными и имеют чётным номер одновременно.

Тогда по определению вероятность случайно вытащенного шарика с чётным номером оказаться чёрным равна [math]{P}(A \mid B) = \frac{{P}(A\cap B)}{{P}(B)} = \frac{1}{3}[/math]

См. также

Источники