Ковариация случайных величин — различия между версиями
Rukin (обсуждение | вклад) (→Свойства ковариации) |
Rukin (обсуждение | вклад) (→Ссылки) |
||
Строка 84: | Строка 84: | ||
*[http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node48.html http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node48.html] | *[http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node48.html http://www.nsu.ru/mmf/tvims/chernova/tv/lec/node48.html] | ||
*[http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D1%8F Википедия] | *[http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D1%8F Википедия] | ||
+ | *[http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F#.D0.9F.D0.B0.D1.80.D0.B0.D0.BC.D0.B5.D1.82.D1.80.D0.B8.D1.87.D0.B5.D1.81.D0.BA.D0.B8.D0.B5_.D0.BF.D0.BE.D0.BA.D0.B0.D0.B7.D0.B0.D1.82.D0.B5.D0.BB.D0.B8_.D0.BA.D0.BE.D1.80.D1.80.D0.B5.D0.BB.D1.8F.D1.86.D0.B8.D0.B8 Википедия (доказательство неравенства Коши — Буняковского)] |
Версия 10:16, 12 января 2012
Определение: |
Ковариация случайных величин — 1) мера линейной зависимости случайных величин; 2) числовая характеристика совместного распределения двух случайных величин, равная математическому ожиданию произведения отклонений случайных величин от их математических ожиданий. |
Вычисление
Обозначается как случайные величины.
, где -В силу линейности математического ожидания, ковариация может быть записана как:
Итого,
Свойства ковариации
- Ковариация симметрична:
- .
- Пусть случайные величины, а их две произвольные линейные комбинации. Тогда
- .
- Ковариация случайной величины с собой равна её дисперсии:
- .
- Если независимые случайные величины, то
- .
Обратное, вообще говоря, неверно.
- Неравенство Коши — Буняковского:
- если принять в качестве скалярного произведения двух случайных величин ковариацию
- .
, то квадрат нормы случайной величины будет равен дисперсии и Неравенство Коши-Буняковского запишется в виде:
Доказательство:
Запишем неравенство в другом виде:
- .
Введём в рассмотрение случайную величину
(где — среднеквадратическое отклонение) и найдём её дисперсию . Выполнив выкладки получим:
Любая дисперсия неотрицательна, поэтому
Отсюда
Введя случайную величину
, аналогично
Объединив полученные неравенства имеем
Или
Итак,
А значит, верно и исходное неравенство: