Матричный умножитель — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Схемная сложность)
Строка 21: Строка 21:
 
==== Схема ====
 
==== Схема ====
 
[[Файл:Mul_2.jpg‎|right|Схема матричного умножителя]]
 
[[Файл:Mul_2.jpg‎|right|Схема матричного умножителя]]
Далее будем рассматривать умножение четырехразрядных чисел. Соответственно нам понадобится три четырёхразрядных сумматора.  
+
Далее будем рассматривать умножение пяти разрядного и четырех разрядного чисел. Соответственно нам понадобится три пяти разрядных сумматора.  
  
Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик, приведена на схеме. Формирование частичных произведений в этой схеме осуществляют микросхемы <tex>D1, D3, D5, D7 </tex>. В этих микросхемах содержится сразу четыре логических элемента “2И”.
+
Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик, приведена на схеме. Формирование частичных произведений в этой схеме осуществляется посредством логических элементов “2И”.
==== Работа схемы ====
+
===== Работа схемы =====
===== Этап 1 =====
+
Схема работает по достаточно простому принципу.
Сумматор, выполненный на микросхеме <tex>D6</tex>, суммирует первое и второе частные произведения. При этом младший разряд первого частного произведения не нуждается в суммировании. Поэтому он подаётся на выход умножителя непосредственно (разряд <tex>M0</tex>).
 
  
===== Этап 2 =====
+
В начале первый разряд первого и первый разряд второго числа поступают на элемент "2И" и результат сразу записывается в первый разряд произведения.
Второе частное произведение должно быть сдвинуто на один разряд. Это осуществляется тем, что младший разряд выходного числа сумматора <tex>D6</tex> соединяется со вторым разрядом произведения (<tex>M1</tex>). Но тогда первое частное произведение необходимо сдвинуть на один разряд по отношению ко второму частному произведению! Это выполняется тем, что младший разряд группы входов <tex>A</tex>  соединяется с первым разрядом частного произведения, первый разряд группы входов <tex>A</tex> соединяется со вторым разрядом частного произведения, и так же третий, четвертый и старший. Однако старший разряд группы входов <tex>A</tex>  не с чем соединять! Вспомним, что если добавить к числу слева ноль, то значение числа не изменится, поэтому мы можем этот разряд соединить с общим проводом схемы.  
 
  
===== Завершение =====
+
Дальше второй разряд первого числа снова поступает вместе с первым разрядом второго числа на элемент 2И и результат уже суммируется с произведение первого разряда первого числа и второго разряда второго числа и все это записывается во второй разряд произведения.
Точно таким же образом осуществляется суммирование третьего и четвёртого частного произведения. Это суммирование выполняют микросхемы <tex>D4</tex> и <tex>D2</tex> соответственно. Отличие заключается только в том, что здесь не нужно задумываться о старшем разряде предыдущей суммы, ведь предыдущая микросхема сумматора формирует сигнал переноса.
 
  
 +
И дальше все продолжается по циклу.
 +
 +
То есть все произведения разрядов первого числа на <tex> n - 1 </tex> разряд второго числа суммируются с произведением предыдущего разряда первого числа на <tex> n </tex> разряд второго числа.  И далее эта сумма так же суммируется, если только мы уже не получили нужный нам разряд произведения.
 
===== Проводники =====
 
===== Проводники =====
Как мы можем видеть у нас на схеме <tex>8</tex> входов и <tex>8</tex> выходов. Как мы можем видеть, <tex>a0 - a3</tex> - это разряды первого числа, <tex>b0 - b3</tex> - это разряды второго числа. <tex>a2, b2, a3, b3</tex>  проводники идут ко всем микросхемам (<tex>D1, D3, D5, D7 </tex>), а <tex>a0, b0, a1, b1</tex> идут каждый только к одной микросхеме, <tex>a0</tex> к <tex>D7</tex>, <tex>b0</tex> к <tex>D5</tex>, <tex>a1</tex> к <tex>D3</tex>, <tex>b1</tex> к <tex>D1</tex>. А на выходе мы имеем  <tex>p0 - p7</tex> - это разряды конечного числа.
+
Как мы можем видеть, <tex>y1 - y5</tex> - это разряды первого числа, <tex>x1 - x4</tex> - это разряды второго числа. <tex>y1 - y5</tex>  проводники идут ко всем элементам 2И, а <tex>x1 - x4</tex> идут каждый только к одному из пяти разрядных сумматоров <tex>SM</tex>. А на выходе мы имеем  <tex>z1 - z9</tex> - это разряды конечного числа.
  
 
==== "Матричный умножитель" ====
 
==== "Матричный умножитель" ====

Версия 06:05, 13 января 2012

Определение

Матричный умножитель — цифровая схема, осуществляющая умножение двух чисел c помощью двоичного каскадного сумматора.

Принцип работы

Умножение в бинарной системе

Двоумн.gif
Матричный умножитель 2.PNG

Умножение в бинарной системе счисления происходит точно так же, как в десятичной. Для формирования произведения требуется вычислить [math]n[/math] (где [math]n[/math] — количество разрядов в числах) частичных произведений. Примечательно то, что в бинарной арифметике следует умножать только числа [math]1[/math] и [math]0[/math]. Это означает, что нужно прибавлять к сумме остальных частичных произведений либо множитель, либо ноль. Таким образом, для формирования частичного произведения можно воспользоваться логическими элементами “2И”.

Вычисление частичных произведений

Для формирования частичного произведения, кроме операции умножения на один разряд, требуется осуществлять его сдвиг влево на число разрядов, соответствующее весу разряда множителя. Сдвиг можно осуществить простым соединением соответствующих разрядов частичных произведений к необходимым разрядам двоичного сумматора.

Матричный умножитель вычисляет частичные произведения по формуле:

[math]m_i = 2^{i} a b_i[/math]

Суммирование частичных произведений

На этом этапе происходит сложение всех частичных произведений m. В большинстве современных систем это происходит с помощью дерева Уоллеса.

Схема

Схема матричного умножителя

Далее будем рассматривать умножение пяти разрядного и четырех разрядного чисел. Соответственно нам понадобится три пяти разрядных сумматора.

Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик, приведена на схеме. Формирование частичных произведений в этой схеме осуществляется посредством логических элементов “2И”.

Работа схемы

Схема работает по достаточно простому принципу.

В начале первый разряд первого и первый разряд второго числа поступают на элемент "2И" и результат сразу записывается в первый разряд произведения.

Дальше второй разряд первого числа снова поступает вместе с первым разрядом второго числа на элемент 2И и результат уже суммируется с произведение первого разряда первого числа и второго разряда второго числа и все это записывается во второй разряд произведения.

И дальше все продолжается по циклу.

То есть все произведения разрядов первого числа на [math] n - 1 [/math] разряд второго числа суммируются с произведением предыдущего разряда первого числа на [math] n [/math] разряд второго числа. И далее эта сумма так же суммируется, если только мы уже не получили нужный нам разряд произведения.

Проводники

Как мы можем видеть, [math]y1 - y5[/math] - это разряды первого числа, [math]x1 - x4[/math] - это разряды второго числа. [math]y1 - y5[/math] проводники идут ко всем элементам 2И, а [math]x1 - x4[/math] идут каждый только к одному из пяти разрядных сумматоров [math]SM[/math]. А на выходе мы имеем [math]z1 - z9[/math] - это разряды конечного числа.

"Матричный умножитель"

Если внимательно посмотреть на схему умножителя, то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа [math]A[/math] и числа [math]B[/math]. В точках пересечения этих проводников находятся логические элементы “2И”. Именно по этой причине умножители, реализованные по данной схеме, получили название матричных умножителей.

Схемная сложность

Частичные произведения вычисляются за [math]n[/math] шагов. Сложение с вычислением переносов включает [math]n - 1[/math] шаг. Последнее сложение можно выполнить за [math]O(\log n)[/math].

В итоге суммарное время работы:

[math]O(n) + O(n) + O(\log n) = O(n) [/math]

Конкретно по нашей схеме:

Скорость работы схемы, приведенной на рисунке определяется глубиной этой схемы. Это цепь [math]D7, D6, D4, D2[/math].

Время работы схемы можно сократить, если сумматоры располагать не последовательно друг за другом, как это предполагается алгоритмом, приведенным на первом рисунке (общая схема), а суммировать частичные произведения попарно, затем суммировать пары частичных произведений и т.д. В этом случае время выполнения операции умножения значительно сократится.

Особенно заметен выигрыш в быстродействии при построении многоразрядных умножителей, однако ничего не бывает бесплатно. В обмен на быстродействие придётся заплатить увеличением разрядности сумматоров, а значит сложностью схемы.

Есть и более быстрые способы умножения двух чисел, например умножение с помощью дерева Уоллеса, которое работает [math]O(\log n)[/math].

Литература

  • Е. Угрюмов "Цифровая схемотехника" 2001г.
  • Дк. Ф. Уэйкерли "Проектирование цифровых устройств, том 1." 2002г.
  • М.И. Богданович "Цифровые интегральные микросхемы" 1996г.
  • В.Л. Шило "Популярные цифровые микросхемы" 1988г.