Метод четырёх русских для умножения матриц — различия между версиями
Gr1n (обсуждение | вклад) |
|||
| Строка 27: | Строка 27: | ||
Итого: <tex>O(2^{2k}k) + O(\frac{n^3}{k})</tex>. | Итого: <tex>O(2^{2k}k) + O(\frac{n^3}{k})</tex>. | ||
| + | Выбрав <tex>k = \log n </tex>, получаем требуемую асимптотику <tex dpi=140>O(n^2 \log n) + O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n})</tex> | ||
| − | + | [[Файл:exampleNew1.jpg]] | |
== Пример работы алгоритма == | == Пример работы алгоритма == | ||
Версия 07:07, 13 января 2012
Дано две квадратных матрицы и , состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю .
Содержание
Простое решение
Если мы будем считать произведение матриц по определению(), то сложность работы алгоритма составит — каждый из элементов результирующей матрицы вычисляется за время, пропорциональное .
Сейчас будет показано, как немного уменьшить это время.
Сжатие матриц
Для выполнения сжатия матриц выполним следующий предподсчёт : для всех возможных пар двоичных векторов длины подсчитаем и запомним их скалярное произведение по модулю .
Возьмём первую матрицу. разделим каждую её строку на куски размера . Для каждого куска определим номер двоичного вектора, который соответствует числам, находящимся на этом куске. Если кусок получился неравным по длине (последний кусок строки), то будем считать, что в конце в нём идут не влияющие на умножение нули. Получим матрицу .
Аналогично поступим с матрицей , вместо строк деля столбцы. Получим матрицу .
Теперь, если вместо произведения матриц и считать произведение новых матриц и , воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы будет получаться уже за время, пропорциональное вместо , и время произведения матриц сократится с до .
Оценка сложности алгоритма и выбор k
Оценим асимптотику данного алгоритма.
- Предподсчёт скалярных произведений работает за .
- Создание матриц и —
- Перемножение полученных матриц —
Итого: . Выбрав , получаем требуемую асимптотику
Пример работы алгоритма
Рассмотрим работу алгоритма на примере перемножения двух матриц и , где
,
, то предподсчитаем все скалярные произведения:
Для удобства каждому битовому вектору будет соответствовать двоичное число с ведущими нулями, т.е. в данном случае имеем числа , , , . Ниже приведена таблица, в которой записаны все искомые произведения:
Согласно соглашению относительно битовых векторов и двоичных чисел получим новые матрицы и :
,
Перемножим эти матрицы по модулю два с использованием нашего предпосчета:
Матрица - искомая.
Литература
- Gregory V. Bard — Accelerating Cryptanalysis with the Method of Four Russians July 22, 2006. Страница 5
