Регулярная марковская цепь — различия между версиями
Yurik (обсуждение | вклад) |
Yurik (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
− | В регулярной Марковской цепи из любого состояния можно попасть в другое за некоторое число ходов. | + | В регулярной Марковской цепи из любого состояния можно попасть в любое другое за некоторое число ходов. |
== Лемма == | == Лемма == | ||
Строка 19: | Строка 19: | ||
<tex>am_0 + (1 - a)M_0 = M_0 - a(M_0 - m_0)</tex>, где а - элемент P, который домножается на <tex>m_0</tex>, причем <tex>a \geqslant \varepsilon</tex>. Поэтому наше выражение не превосходит <tex>M_0 - \varepsilon(M_0 - m_0)</tex>. Отсюда и из неравенства <tex>x \leqslant x'</tex> получается: <tex>M_1 \leqslant M_0 - \varepsilon (M_0 - m_0)</tex>. | <tex>am_0 + (1 - a)M_0 = M_0 - a(M_0 - m_0)</tex>, где а - элемент P, который домножается на <tex>m_0</tex>, причем <tex>a \geqslant \varepsilon</tex>. Поэтому наше выражение не превосходит <tex>M_0 - \varepsilon(M_0 - m_0)</tex>. Отсюда и из неравенства <tex>x \leqslant x'</tex> получается: <tex>M_1 \leqslant M_0 - \varepsilon (M_0 - m_0)</tex>. | ||
− | Применяя те же рассуждения для вектора х, получим: <tex>-m_1 \leqslant -m_0 - \varepsilon (-m_0 + M_0)</tex>. | + | Применяя те же рассуждения для вектора -х, получим: <tex>-m_1 \leqslant -m_0 - \varepsilon (-m_0 + M_0)</tex>. |
+ | |||
+ | Складывая эти два неравенства, получаем <tex>M_1 - m_1 \leqslant M_0 - m_0 - 2\varepsilon (M_0 - m_0) = (1 - 2\varepsilon )(M_0 - m_0)</tex>, ч.т.д. | ||
+ | |||
+ | == Основная теорема регулярных цепей == | ||
+ | |||
+ | {{Теорема | ||
+ | |statement=Пусть Р - регулярная переходная матрица. Тогда:<br> | ||
+ | <tex>\exists A: \displaystyle \lim_{n \to \infty}P^n = A</tex><br>; | ||
+ | каждая строка А представляет собой один и тот же вероятностный вектор <tex>\alpha = \{a_1, a_2, \ldots, a_n \}</tex> | ||
+ | }} | ||
+ | |||
+ | Доказательство: | ||
+ | |||
+ | Рассмотрим вектор-столбец <tex>\rho _j</tex>, у которого j-й элемент равен 1, а все остальные равны 0. Пусть <tex>M_n</tex> и <tex>m_n</tex> - минимальный и максимальный элементы столбца <tex>P^n \rho _j</tex>. | ||
+ | Так как <tex>P^n \rho _j = P \cdot P^{n-1} \rho _j</tex>, то из леммы следует, что <tex>M_1 \geqslant M_2 \geqslant \ldots</tex> и <tex>m_1 \leqslant m_2 \leqslant \ldots</tex> и | ||
+ | |||
+ | <tex>M_n - m_n \leqslant (1 - 2\varepsilon )(M_{n-1} - m_{n-1})</tex>. Пусть <tex>d_n = M_n - m_n</tex>, тогда | ||
+ | |||
+ | <tex>d_n \leqslant (1 - 2 \varepsilon )^n d_0 = (1 - 2 \varepsilon)^n \to 0</tex>. | ||
+ | |||
+ | Значит <tex>P^n \rho _j</tex> сходится к вектору, все элементы которого равны между собой. Пусть <tex>a_j</tex> - их общее значение. Тогда <tex>0 \leqslant a_j \leqslant 1</tex>. Заметим, что <tex>P^n \rho _j</tex> - j-тый столбец матрицы <tex>P^n</tex>. Рассмотрим все <tex>\rho _j</tex> для <tex>j = 1, 2, \ldots</tex>. Тогда <tex>P^n</tex> сходится к матрице А, у которой по строкам стоит один и тот же вектор <tex>\alpha = \{a_1, a_2, \ldots, a_n \}</tex>. | ||
+ | Так как в каждой матрице <tex>P^n</tex> сумма элементов в строке равна 1, то то же самое справедливо и для предельной матрицы А. Теорема доказана. | ||
== Литература == | == Литература == | ||
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова", стр 93 | Дж. Кемени, Дж. Снелл "Конечные цепи Маркова", стр 93 |
Версия 07:09, 13 января 2012
Регулярная цепь Маркова
Определение: |
Марковская цепь называется регулярной (нормальной), если в матрице перехода P | .
В регулярной Марковской цепи из любого состояния можно попасть в любое другое за некоторое число ходов.
Лемма
Лемма: |
Пусть — матрица перехода регулярной цепи, — минимальный элемент этой матрицы. Пусть х — произвольный r-мерный вектор-столбец, имеющий максимальный элемент и минимальный . Пусть и - максимальный и минимальный элементы . Тогда , и |
Доказательство:
Пусть х' - вектор, полученный из х заменой всех элементов, кроме
на . Тогда . Каждый элемент имеет вид, где а - элемент P, который домножается на , причем . Поэтому наше выражение не превосходит . Отсюда и из неравенства получается: .
Применяя те же рассуждения для вектора -х, получим:
.Складывая эти два неравенства, получаем
, ч.т.д.Основная теорема регулярных цепей
Теорема: |
Пусть Р - регулярная переходная матрица. Тогда:
|
Доказательство:
Рассмотрим вектор-столбец
, у которого j-й элемент равен 1, а все остальные равны 0. Пусть и - минимальный и максимальный элементы столбца . Так как , то из леммы следует, что и и. Пусть , тогда
.
Значит
сходится к вектору, все элементы которого равны между собой. Пусть - их общее значение. Тогда . Заметим, что - j-тый столбец матрицы . Рассмотрим все для . Тогда сходится к матрице А, у которой по строкам стоит один и тот же вектор . Так как в каждой матрице сумма элементов в строке равна 1, то то же самое справедливо и для предельной матрицы А. Теорема доказана.Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова", стр 93