Эргодическая марковская цепь — различия между версиями
Whiplash (обсуждение | вклад)  | 
				|||
| Строка 3: | Строка 3: | ||
:<tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots</tex>.  | :<tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j, \quad \forall i=1,2, \ldots</tex>.  | ||
}}  | }}  | ||
| + | |||
| + | Эргодические цепи могут быть '''регулярными''' или '''циклическими'''. Циклические цепи отличаются от регулярных тем, что в процессе переходов через определенное количество шагов (цикл) происходит возврат в какое-либо состояние. Регулярные цепи этим свойством не обладают.  | ||
==Основная теорема об эргодических распределениях==  | ==Основная теорема об эргодических распределениях==  | ||
Версия 07:38, 13 января 2012
| Определение: | 
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) , такое что  и
  | 
Эргодические цепи могут быть регулярными или циклическими. Циклические цепи отличаются от регулярных тем, что в процессе переходов через определенное количество шагов (цикл) происходит возврат в какое-либо состояние. Регулярные цепи этим свойством не обладают.
Содержание
Основная теорема об эргодических распределениях
| Теорема (Основная теорема об эргодических распределениях): | 
Пусть  - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей . Тогда эта цепь является эргодической тогда и только тогда, когда она
 
 Эргодическое распределение тогда является единственным решением системы: 
  | 
Пример
Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Состояние меняется на противоположное, при бросании монеты, с вероятностью (если орёл — меняем состояние, если решка — не меняем).
Получается мы можем рассмотрим матрицу, следующего вида: . Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение , такое что .
См. также
Примечания
- ↑ 
Пусть  — цепь Маркова с тремя состояниями , и её матрица переходных вероятностей имеет вид
 
Ссылки
Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова" - Издательство "Наука", 1970 г - 129 c.