Ковариация случайных величин — различия между версиями
(→Вычисление) |
(→Вычисление) |
||
Строка 9: | Строка 9: | ||
В силу линейности математического ожидания, ковариация может быть записана как: | В силу линейности математического ожидания, ковариация может быть записана как: | ||
− | :<tex>Cov(\eta, \xi) = E(\xi - E\xi)(\eta - E\eta) = E(\xi\eta - \eta E\xi + E\xi E\eta - \xi E\eta) = </tex> | + | :<tex>Cov(\eta, \xi) = E\big((\xi - E\xi)(\eta - E\eta)\big) = E(\xi\eta - \eta E\xi + E\xi E\eta - \xi E\eta) = </tex> |
:<tex>= E(\xi\eta) - E\xi E\eta - E\xi E\eta + E\xi E\eta = E(\xi\eta) - E\xi E\eta </tex> | :<tex>= E(\xi\eta) - E\xi E\eta - E\xi E\eta + E\xi E\eta = E(\xi\eta) - E\xi E\eta </tex> | ||
Версия 22:07, 13 января 2012
Определение: |
Ковариация случайных величин: пусть
| — две случайные величины, определённые на одном и том же вероятностном пространстве. Тогда их ковариация определяется следующим образом:
Вычисление
В силу линейности математического ожидания, ковариация может быть записана как:
Итого,
Свойства ковариации
- Ковариация симметрична:
- .
- Пусть случайные величины, а их две произвольные линейные комбинации. Тогда
- .
- Ковариация случайной величины с собой равна её дисперсии:
- .
- Если независимые случайные величины, то
- .
Обратное, вообще говоря, неверно.
Неравенство Коши — Буняковского
Теорема (неравенство Коши — Буняковского): |
Если принять в качестве скалярного произведения двух случайных величин ковариацию , то квадрат нормы случайной величины будет равен дисперсии и Неравенство Коши-Буняковского запишется в виде:
|
Доказательство: |
Запишем неравенство в другом виде:
Введём в рассмотрение случайную величину (где — среднеквадратическое отклонение) и найдём её дисперсию . Выполнив выкладки получим:
Любая дисперсия неотрицательна, поэтому
Отсюда
Введя случайную величину , аналогично
Объединив полученные неравенства имеем
Или
Итак,
А значит, верно и исходное неравенство: |