Теорема о компактности сопряжённого оператора — различия между версиями
Ulyantsev (обсуждение | вклад) |
Ulyantsev (обсуждение | вклад) (→Доказательство теоремы) |
||
Строка 8: | Строка 8: | ||
Для доказательства необходимо показать, что множество <tex>\{A^*\phi \mid \|\phi\| \le 1\}</tex> будет относительно компактно в <tex>E^*</tex>. | Для доказательства необходимо показать, что множество <tex>\{A^*\phi \mid \|\phi\| \le 1\}</tex> будет относительно компактно в <tex>E^*</tex>. | ||
Для этого надо показать, что если взята последовательность <tex>\{\phi_n\}</tex> такая, что <tex>\|\phi_n\| \le 1\</tex>, то можно выбрать <tex>\{\phi_{n_k}\}</tex> такую, что <tex>A^*\phi_{n_k}</tex> сходится в <tex>E^*</tex>. | Для этого надо показать, что если взята последовательность <tex>\{\phi_n\}</tex> такая, что <tex>\|\phi_n\| \le 1\</tex>, то можно выбрать <tex>\{\phi_{n_k}\}</tex> такую, что <tex>A^*\phi_{n_k}</tex> сходится в <tex>E^*</tex>. | ||
+ | |||
+ | Рассмотрим в <tex>E</tex> единичный замкнутый шар <tex>\overline{V}</tex>. | ||
+ | По компактности оператора <tex>K = Cl(A(\overline{V})) \subset F</tex> будет метрическим компактом. | ||
+ | Рассмотрим сужение функционалов <tex>\phi_n</tex> на <tex>K</tex>. (?еще что-то) | ||
+ | |||
+ | Докажем ''равностепенную непрерывность'' этой последовательности: рассмотрим <tex>y, z \in K</tex>. | ||
+ | Норма | ||
+ | :<tex>\|\phi_n(z) - \phi_n(y)\| = \|\phi_n(z - y)\| \le \|\phi_n\| \|z - y\| \le \|z - y\|</tex> | ||
+ | не зависит от <tex>n</tex>, а следовательно <tex>\{\phi_n\}</tex> равностепенно непрерывна. | ||
+ | |||
+ | Выполняется и ''равномерная ограниченность'' последовательности. Для любого <tex>y \in K</tex>: | ||
+ | :<tex>\|\phi_n(y)\| \le \|\phi_n\| \|y\| \le \|y\| \le const</tex>. | ||
+ | |||
+ | Таким образом <tex>\{\phi_n\}</tex> равномерно ограничена и равностепенно непрерывна, следовательно, по теореме Арцела — Асколи из нее можно выделить равномерно сходящуюся последовательность <tex>\{\phi_{n_m}\}</tex> в <tex>K</tex>. | ||
+ | |||
+ | Для доказательства теоремы осталось показать, что <tex>A^*\{\phi_{n_m}\}</tex> сходится в <tex>E^*</tex>. Для этого достаточно выяснить, что <tex>A^*\{\phi_{n_m}\}</tex> равномерно сходится (при устремлении <tex>m</tex> к бесконечности) на <tex>\overline{V}</tex>. |
Версия 22:53, 20 июня 2010
Пусть
является компактным оператором. Тогда сопряженный к нему оператор также является компактным.Доказательство теоремы
Итак, рассмотрим оператор
. По определению сопряженного оператора, если , то .Для доказательства необходимо показать, что множество
будет относительно компактно в . Для этого надо показать, что если взята последовательность такая, что , то можно выбрать такую, что сходится в .Рассмотрим в
единичный замкнутый шар . По компактности оператора будет метрическим компактом. Рассмотрим сужение функционалов на . (?еще что-то)Докажем равностепенную непрерывность этой последовательности: рассмотрим
. Нормане зависит от
, а следовательно равностепенно непрерывна.Выполняется и равномерная ограниченность последовательности. Для любого
:- .
Таким образом
равномерно ограничена и равностепенно непрерывна, следовательно, по теореме Арцела — Асколи из нее можно выделить равномерно сходящуюся последовательность в .Для доказательства теоремы осталось показать, что
сходится в . Для этого достаточно выяснить, что равномерно сходится (при устремлении к бесконечности) на .