Задача коммивояжера, ДП по подмножествам — различия между версиями
Krotser (обсуждение | вклад) |
(→Динамическое программирование по подмножествам (по маскам)) |
||
| Строка 22: | Строка 22: | ||
Обозначим <tex>d[i][mask]</tex> как наименьшую стоимость пути из вершины <tex>i</tex> в вершину <tex>0</tex>, проходящую (не считая вершины <tex>i</tex>) единожды по всем тем и только тем вершинам <tex>j</tex>, для которых <tex>mask_j = 1</tex> (т.е. <tex>d[i][mask]</tex> уже найденный оптимальный путь от <tex>i</tex>-ой вершины до <tex>0</tex>-ой, проходящий через те вершины, где <tex>mask_j=1</tex>. Если <tex>mask_j=0</tex>,то эти вершины еще не посещены). | Обозначим <tex>d[i][mask]</tex> как наименьшую стоимость пути из вершины <tex>i</tex> в вершину <tex>0</tex>, проходящую (не считая вершины <tex>i</tex>) единожды по всем тем и только тем вершинам <tex>j</tex>, для которых <tex>mask_j = 1</tex> (т.е. <tex>d[i][mask]</tex> уже найденный оптимальный путь от <tex>i</tex>-ой вершины до <tex>0</tex>-ой, проходящий через те вершины, где <tex>mask_j=1</tex>. Если <tex>mask_j=0</tex>,то эти вершины еще не посещены). | ||
| − | Начальное состояние - когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен <tex>0</tex> (т.е. <tex>i = 0</tex> | + | *Начальное состояние - когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен <tex>0</tex> (т.е. <tex>i = 0</tex> и <tex>mask = 0</tex>). |
| + | *Для остальных состояний (<tex>i \ne 0</tex> или <tex>mask \ne 0</tex>) перебираем все возможные переходы в <tex>i</tex>-ую вершину из любой посещенной ранее и выбираем минимальный результат. | ||
| + | *Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как <tex>\infty</tex>). | ||
| − | То есть, <tex>d[i][mask]</tex> | + | То есть, <tex>d[i][mask]</tex> принимает значения: |
<tex> d[i][mask] = | <tex> d[i][mask] = | ||
\begin{cases} | \begin{cases} | ||
| − | 0, & | + | 0, & \\ |
| − | \min\limits_{j:\text{ }mask_j=1,\text{ }(i, j) \in E} \begin{Bmatrix} w(i, j) + d[j][mask - 2^j] \end{Bmatrix}, & | + | \min\limits_{j:\text{ }mask_j=1,\text{ }(i, j) \in E} \begin{Bmatrix} w(i, j) + d[j][mask - 2^j] \end{Bmatrix}, & \\ |
| − | \infty, & | + | \infty, & |
\end{cases} | \end{cases} | ||
</tex> | </tex> | ||
Версия 02:55, 14 января 2012
Задача о коммивояжере (англ. Travelling - salesman problem, TSP) - это задача, в которой коммивояжер должен посетить городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей?
Содержание
Варианты решения
В теории алгоритмов NP-полная (NPC, NP-complete) задача — задача из класса NP, к которой можно свести любую другую задачу из класса NP за полиномиальное время. Таким образом, NP-полные задачи образуют в некотором смысле подмножество «самых сложных» задач в классе NP; и если для какой-то из них будет найден «быстрый» алгоритм решения, то и любая другая задача из класса NP может быть решена так же «быстро». Cтатус NP-полных задач пока что неизвестен. Для их решения до настоящего времени не разработано алгоритмов с полиномиальным временем работы, но и не доказано, что для какой-то из них алгоритмов не существует. Этот так называемый вопрос PNP с момента своей постановки в 1971 году стал одним из самых трудных в теории вычислительных систем.
Так вот задача о коммивояжере относится к классу NP-полных задач. Поэтому, рассмотрим два варианта решения с экспоненциальным временем работы.
Перебор перестановок
Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших . Сложность алгоритма .
Динамическое программирование по подмножествам (по маскам)
Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе.
Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе вершин, пронумерованных от до и каждое ребро имеет некоторый вес . Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.
Зафиксируем начальную вершину и будем искать гамильтонов цикл наименьшей стоимости - путь от до , проходящий по всем вершинам (кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор не имеет значения. Поэтому будем считать .
Подмножества вершин будем кодировать битовыми векторами, обозначим значение -ого бита в векторе .
Обозначим как наименьшую стоимость пути из вершины в вершину , проходящую (не считая вершины ) единожды по всем тем и только тем вершинам , для которых (т.е. уже найденный оптимальный путь от -ой вершины до -ой, проходящий через те вершины, где . Если ,то эти вершины еще не посещены).
- Начальное состояние - когда находимся в 0-й вершине, ни одна вершина не посещена, а пройденный путь равен (т.е. и ).
- Для остальных состояний ( или ) перебираем все возможные переходы в -ую вершину из любой посещенной ранее и выбираем минимальный результат.
- Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как ).
То есть, принимает значения:
Стоимостью минимального гамильтонова цикла в исходном графе будет значение - стоимость пути из -й вершины в -ю, при необходимости посетить все вершины. Данное решение требует памяти и времени.
Для того, чтобы восстановить сам путь, воспользуемся соотношением , которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния , , найдем вершину , для которой выполняется указанное соотношение, добавим в ответ, пересчитаем текущее состояние как , . Процесс заканчивается в состоянии , .
Реализация
//Все переменные используются из описания алгоритма, inf = бесконечность
d[0][0] = 0;
for i = 0 to n - 1
for mask = 0 to mask = 2 ** n - 1
for j = 0 to n - 1
if j-ий бит mask == 1
if w(i, j) существует
d[i][mask] = min(d[i][mask], d[j][mask - 2 ** n] + w(i, j);
else
d[i][mask] = inf;
print d[0][2 ** n - 1];
Ссылки
Литература
- Романовский И. В. Дискретный анализ. СПб.: Невский Диалект; БХВ-Петербург, 2003. ISBN 5-7940-0114-3
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4